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Abstract
Endocytosis and endosome trafficking regulate cell signaling in un-
expected ways. Here we review the contribution that Drosophila re-
search has made to this exciting field. In addition to attenuating
signaling, endocytosis shapes morphogen gradients, activates lig-
ands, and regulates spatially receptor activation within a single cell.
Moreover, some receptors signal from within endosomes, and the
ability of a specific type of endosome to form controls the ability of
cells to signal. Experiments in Drosophila reveal that through regula-
tion of a variety of cell signaling pathways, endocytosis controls cell
patterning and cell fate.

181

First published online as a Review 
in Advance on June 15, 2006

A
nn

u.
 R

ev
. C

el
l. 

D
ev

. B
io

l. 
20

06
.2

2.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

A
PE

S 
on

 0
7/

07
/0

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV288-CB22-08 ARI 7 June 2006 11:47

Clathrin: a
multimeric protein
consisting of three
heavy chains and two
light chains that coat
the endocytic vesicles
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ENDOCYTOSIS AND
MEMBRANES

Endocytosis is the internalization of plasma
membrane into the cytoplasm as vesicles or
endosomes (Figure 1). Endocytosis in verte-
brate cells, and probably also in Drosophila,
occurs by one of two general mechanisms:
clathrin-dependent and clathrin-independent

internalization (Leroy & Wrana 2005). In
clathrin-dependent endocytosis, with the help
of the AP-2 adapter complex, clathrin triske-
lia form a cage structure around invaginated
membrane, and the activity of the GTPase
dynamin results in vesicle scission. Newly
formed vesicles fuse with the early (sort-
ing) endosome, and the internalized proteins
either are shunted to the recycling endo-
some and sent back to the plasma membrane,
or targeted to the multivesicular body/late
endosome prior to secretion as an exo-
some or lysosomal degradation. Clathrin-
independent internalization occurs at sites
of lipid rafts, which are cholesterol-rich re-
gions of the plasma membrane. The protein
caveolin mediates some of the clathrin-
independent events, forming membrane in-
vaginations called caveolae. Drosophila have
no caveolin, but other proteins associated
with caveolae (i.e., flotillin and annexin) are
present. Clathrin-independent endocytosis is
not well characterized, but dynamin is usually
involved, and the vesicles may be delivered to
sorting endosomes.

Several different kinds of proteins and
lipids regulate internalization and endoso-
mal sorting. Rab proteins are membrane-
associated, Ras-like GTPases that control
membrane fusion (Zerial & McBride 2001).
Different Rabs are associated with particu-
lar endosomes, and they regulate endosome/
endosome and endosome/plasma membrane
fusion. Inositol phospholipids, or phospho-
inositides, constitute a small fraction of the
phospholipids in the plasma membrane and
endosome membranes. Distinct regions of
the plasma membrane and different endo-
somes are enriched in specific varieties of
phosphoinositides, which bind with differ-
ing affinities to proteins with lipid-binding
domains (Lemmon 2003, LeRoy & Wrana
2005). For example, Hrs (hepatocyte growth
factor–regulated tyrosine kinase substrate),
a protein required for formation of the in-
ner vesicles of multivesicular bodies (MVBs),
is localized to early endosomes by binding
PI3P (Komada & Kitamura 2005). Another
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example is epsin, an endocytic adapter pro-
tein that in Drosophila is specifically required
for internalization of the ligand Delta and
Delta signaling (see below). Epsin is localized
to the plasma membrane via its ENTH (epsin
N-terminal homology) domain, which binds
PI(4,5)P2 (Legendre-Guillemin et al. 2004).
Transmembrane proteins may have cytoplas-
mically located internalization signals that are
part of their primary amino acid sequence
(Bonifacino & Traub 2003). Alternatively, a
Ub (ubiquitin) polypeptide that serves as an
endocytosis signal may be added posttransla-
tionally to the cytoplasmic domain (Hicke &
Dunn 2003, Raiborg et al. 2003, Dupre et al.
2004).

Researchers in this field face a variety of
challenges. For example, when one is imag-
ing cells, it can be difficult to distinguish en-
docytic and secretory vesicles and to iden-
tify different endosomes along the endocytic
pathway. Many new markers have been devel-
oped for the endosomes already identified, but
there may well be other kinds of endosomes
awaiting discovery. Experiments with mutants
are also problematic in that the same mutation
can often affect both secretion and endocyto-
sis or several different steps in endosomal sort-
ing. New techniques that allow targeting of
mutations to specific cells are helping to over-
come this obstacle. There are several recent
general reviews of the role of endocytosis in
cell signaling and development in Drosophila
(Seto et al. 2002, Piddini & Vincent 2003,
Dudu et al. 2004).

MORPHOGENS: GRADIENT
FORMATION AND SIGNALING

Morphogens are factors that specify cellular
identity in a concentration-dependent man-
ner. Three protein morphogens, Hedgehog
(Hh), Wingless (Wg; a Wnt), and Decapen-
taplegic (Dpp; a TGF-β), are diffusible lig-
ands that form gradients in the embryo and
the wing disc. Most evidence suggests that
all three protein gradients are formed by ex-
tracellular diffusion, which is regulated by

Recycling
endosome

Exosome

Rab11 

Rab5

  Dor 
Rab7

Lysosome

Clathrin
mediated

Clathrin
independent

MVB

Sorting
endosome

Early
endosome

Ligand

Receptor

Dynamin

AP–2

Clathrin

Figure 1.
A simple view of the endocytic pathway. Clathrin-mediated and
clathrin-independent vesicle formation is shown. Internalized membrane
proteins either are sent back to the membrane by the recycling pathway or
as exosomes, or else degraded in the lysosome. See text for details.

Dynamin: a
GTPase known as
Shibire in Drosophila
and a core
component of the
endocytic machinery
required for the
pinching off of
vesicles

Endosome: a
membrane-bound
organelle carrying
endocytosed
materials

HSPG (heparan sulfate proteoglycan) pro-
teins on the outer plasma membrane. Endo-
cytosis regulates the shapes of the gradients as
well as signaling by the respective morphogen
receptors. There have been several interest-
ing reviews of this topic, including Cadigan
(2002), Vincent & Dubois (2002), Entchev
& Gonzalez-Gaitan (2002), Gonzalez-Gaitan
(2003a,b), Raftery & Sutherland (2003), Seto
& Bellen (2004), Tabata & Takei (2004), and
Zhu & Scott (2004).

Roles of Morphogens in Embryo and
Wing Disc Patterning

Each segment in the embryo is 12 cells
wide along the anterior-posterior (AP) axis
(Figure 2). hh is expressed by the most
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Figure 2.
Morphogens that pattern the Drosophila embryo along the AP axis. Cells 1–12 constitute a segment
(black line), where cell 1 is anterior and cell 12 is posterior. The black triangles are denticles, and cell
nuclei are small circles. Wg secretion by cell 10 and Hh secretion by cells 11 and 12 result in protein
gradients spanning the regions shown. Hh pathway activation results in expression and secretion of the
Egfr ligand Spitz (Spi) by cells 1–3, which activates expression of the transcription factor Shavenbaby
(Svb). Conversely, Wg signaling represses Svb expression, resulting in Svb expression in cells 12 and 1–5.
Cells that express Svb form denticles.

posterior two cells of the segment. Hh sig-
naling activates wg expression in cell 10 and
rhomboid (rho) in cells 1–3. Wg controls the
fates of cells 6–11 by repressing denticle for-
mation in those cells that thus give rise to

Adult wing 

Wing disc 

P

P

Hh Dpp Wg 

V

V

D

D

A

A

Figure 3
Morphogens that pattern the Drosophila wing disc. The protein
gradients formed by expression of three different secreted morphogens
are shown. The colored circles indicate those cells that secrete the
morphogen. See text for details.

“naked cuticle.” By contrast, rho expression
results in denticle formation on the cuticles
of all the other cells. dpp patterns the embryo
along the dorsal-ventral (DV) axis. Finally,
dpp is expressed uniformly in dorsal-lateral
cells, and a Dpp activity gradient is formed
through a complex process that involves
endocytosis.

The wing disc is divided into A and P com-
partments; cells in different compartments do
not intermix (Figure 3). hh is expressed in
the P compartment and is secreted into the
A compartment, where it induces expression
of several target genes, including dpp, and pat-
terns the central region of the wing. dpp is ex-
pressed in a stripe of A cells at the AP compart-
ment border and specifies cell fate along the
AP axis of the wing, beyond the central region.
Dpp forms a long-range gradient that acti-
vates target genes at different distances from
the source. wg is expressed at the DV bound-
ary, which will become the wing edge, and
the Wg gradient activates expression of tar-
get genes at different distances from the DV
boundary.
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Dpp

The Dpp gradient in the wing disc is
shaped by endocytosis. Dpp gradient for-
mation in the wing is a consequence of con-
trolled protein dispersal from the cells that
secrete it and of protein removal from the
extracellular space. There has been contro-
versy in the literature regarding whether Dpp
is dispersed by rounds of endocytosis and se-
cretion (planar transcytosis) or by extracellu-
lar diffusion (Entchev et al. 2000; Teleman &
Cohen 2000; Teleman et al. 2001; Entchev
& Gonzalez-Gaitan 2002; Gonzalez-Gaitan
2003a,b; Belenkaya et al. 2004; Zhu & Scott
2004). Different mathematical models sup-
port either side of the argument (Lander et al.
2002; Eldar et al. 2003, 2004; Kruse et al.
2004). Recent evidence indicates that, at least
in the wing, Dpp, like Hh and Wg (see below),
is most likely dispersed by extracellular diffu-
sion, which is regulated by HSPG proteins.
Endocytosis, however, does play a pivotal role
in shaping the gradient (Figure 4).

When Dpp secretion sequences are fused
to GFP, sGFP does not form an extracellu-
lar gradient but merely fills the extracellular
space. Thus, GFP cannot form a gradient by
simple diffusion alone. However, most Dpp is
extracellular, and an extracellular Dpp-GFP
gradient that coincides with Dpp activity (ac-
tivation of an effector protein) has been ob-
served (Belenkaya et al. 2004). Although Dpp-
GFP is also seen in shi+-dependent vesicles,
endocytosis appears not to be required for
movement of Dpp between cells. shi− clones
of cells located between the Dpp source and
wild-type cells do not block Dpp movement,
as they have no effect on expression of Dpp
effector proteins in the wild-type cells. Also,
when the Dpp-GFP source cells are shi+ and
all other cells in the disc are shi−, the extra-
cellular Dpp-GFP gradient forms (Belenkaya
et al. 2004; see also Entchev et al. 2000).

The difference in behavior between sGFP
and Dpp-GFP is likely due to regulation of
diffusion by HSPG proteins as well as to
endocytosis mediated by the Dpp receptor

Planar transcytosis 

Extracellular diffusion 

a

b

lysSource

Source

Morphogen

HSPG

lys

Figure 4
Models for morphogen gradient formation mechanisms. Two extreme
models for the mechanism by which morphogen gradients are formed are
depicted. In the planar transcytosis model, after secretion from the source
cell, the morphogen proteins are dispersed through cell distances by rounds
of receptor-mediated endocytosis and resecretion. At each step, some of the
internalized morphogen is degraded. In the extracellular diffusion model,
morphogen proteins secreted from the source cell are dispersed through cell
distances with the guidance of HSPG proteins. Although the morphogen
is dispersed extracellularly, this model does not exclude a role for receptor-
mediated endocytosis in removing morphogen from the extracellular
space and thereby helping to form the gradient. See text for details.

Rab: small Ras-like
GTPases that
control membrane
fusion and endosome
trafficking

Hrs: Hepatocyte
growth
factor–regulated
tyrosine kinase
substrate

MVB:
multivesicular body

Thickvein (Tkv), both of which shape the Dpp
gradient. Extracellular Dpp-GFP appears to
accumulate around the shi− clones, suggest-
ing that endocytosis normally downregulates
Dpp levels. tkv− clones accumulate Dpp-GFP
around them, facing the source. In addition,
Tkv accumulates on shi ts-mutant cells after a
brief temperature shift, suggesting that Tkv is
normally endocytosed (Belenkaya et al. 2004;
see also Entchev et al. 2000).

The Dpp gradient in embryos is generated
by an opposing Sog gradient whose for-
mation requires endocytosis. In embryos,
a dorsally high gradient of Dpp protein is
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Epsin:
eps15-interacting
protein, known as
Liquid facets in
Drosophila, is a
modular endocytic
adapter with a
C-terminal ENTH
domain and motifs
that bind ubiquitin,
clathrin, and other
proteins

Ub (ubiquitin): a
76-amino-acid
polypeptide that is
covalently linked via
an isopeptide bond
to an internal lysine
residue of a substrate
protein or another
ubiquitin moiety

Morphogen: a
molecule that
determines cell fate
in a concentration-
dependent
manner

Wing disc:
Drosophila imaginal
discs are folded sacs
of epithelial
monolayers. The
imaginal disc cells
proliferate toward
the end of larval life
and evert during
metamorphosis to
become external
structures of the
adult fly such as the
eyes, antennae,
wings, and legs

Compartment: a
cell lineage within a
tissue that does not
intermix with other
cell lineages. The
wing imaginal disc is
divided into anterior
and posterior
compartments

formed by interaction with a ventrally high
gradient of a secreted protein called Short-
ened gastrulation (Sog). Endocytosis is an im-
portant mechanism for generating the Sog
gradient. Sog antagonizes Dpp activity as
well as the activity of a ubiquitous TGF-
β called Screw (Scw). Sog, together with
another protein called Twisted gastrulation
(Tsg), forms complexes with Dpp and Scw,
preventing them from binding receptors. Sog
and Tsg also facilitate dorsal movement of
Dpp. The result is that, although dpp is tran-
scribed dorsally and scw mRNA is ubiquitous,
Dpp and Scw proteins form a DV gradient
(Srinivasan et al. 2002). The Sog gradient is
formed by specific proteolysis by the met-
alloprotease Tolloid (Tld) and by dynamin-
mediated endocytosis of Sog in dorsal cells.
In shits embryos shifted briefly to nonpermis-
sive temperature, there is an increase in ac-
tive extracellular Sog in dorsal cells. As shits;
tld− double mutants show an additive increase
in dorsal Sog levels, endocytosis is indepen-
dent of the Tld mechanism (Marques et al.
1997, Srinivasan et al. 2002, Mizutani et al.
2005).

Dpp signaling from endosomes. In verte-
brate cells, TGF-β signaling occurs from en-
dosomes (Seto et al. 2002; Gonzalez-Gaitan
2003a,b; LeRoy & Wrana 2005). TGF-β lig-
and binding induces assembly of heteromeric
type I/type II ligand complexes. The type II
receptor transphosphorylates the type I recep-
tor, which then phosphorylates a transcrip-
tion factor called an R-Smad, resulting in its
nuclear translocation. A key regulator of sig-
naling is SARA (Smad anchor for receptor
activation), an adaptor between the type I re-
ceptor and R-Smads (Tsukazaki et al. 1998).
Sara is a FYVE protein (i.e., it contains an
F-Y-V-E amino acid motif), and it binds PI3P
and associates with endosomes. Internaliza-
tion of the receptor complex may be essential
for bringing the type I receptor to Sara and R-
Smads at the endosome and/or for generating
an environment that facilitates phosphoryla-
tion of R-Smads (Figure 5a).

Dpp signaling in Drosophila may also oc-
cur from an endosome. A Drosophila Sara ho-
molog has been identified and shown to be
involved in Dpp signaling (Bennett & Alphey
2002), but nothing is known yet about its sub-
cellular localization. However, target protein
expression is reduced cell autonomously in
shi−-mutant clones in the wing disc, indicating
that endocytosis is required for Dpp signal-
ing (Belenkaya et al. 2004). Also, Rab5 over-
expression stimulates Dpp signaling, whereas
blocking Rab5 function has the opposite ef-
fect; conversely, Rab7 gain of function atten-
uates Dpp (Entchev et al. 2000). Finally, stud-
ies of the spinster (spin) gene, which encodes
a late endosomal protein, suggest that Dpp
signaling in Drosophila is endosomal (Sanyal
& Ramaswami 2002, Sweeney & Davis 2002).
spin mutants have overgrown synapses owing
to an increase in TGF-β (probably Dpp) sig-
naling caused by a failure to degrade signal-
ing complexes in the lysosome. These mutants
also have an increased number of endosomes
at the synapse and interact genetically with
Dpp receptor mutants in a manner consistent
with spin, resulting in increased Dpp signal-
ing. Thus, Spin may attenuate Dpp signal-
ing by directing signaling endosomes down
a degradative pathway.

Hedgehog

The Hh gradient in the wing disc and
embryo is shaped by endocytosis. Like
Dpp, Hh protein in the wing disc is dis-
persed by extracellular diffusion facilitated
by HSPGs, and the Hh gradient is shaped
by receptor-mediated endocytosis (Han et al.
2004, Torroja et al. 2004). Unlike Dpp, Hh is
lipid modified (as is Wg; see below), an ob-
servation that has raised the question of how
proteins with such strong membrane affinity
move extracellularly. Hh (and Wg) travel from
cell to cell in the wing by reversible associ-
ation with lipophorin particles that form on
the exoplasmic face of the plasma membrane
(Panakova et al. 2005). Lipophorin RNAi dis-
rupts lipid transport and decreases the range
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of Hh signaling and Hh protein dispersal from
11 cells to 6 cells from the source. Hh accu-
mulates at abnormally high levels in the first
five rows near the source; most of the accumu-
lation is in endosomes with the Hh receptor
Patched (Ptc).

Endocytosis is not required for Hh protein
dispersal in the wing. Hh does not accumu-
late between the source cells and shi− clones.
In addition, wild-type cells posterior to the
shi− clones show normal expression of Hh tar-
get genes (Han et al. 2004). However, Ptc-
mediated endocytosis appears to shape the Hh
gradient. Punctate Hh+Ptc+Rab7+ structures
are usually observed in three to four rows of
A compartment cells abutting the AP bound-
ary. These are absent in the shi clones, and
Hh or Hh-GFP accumulates on the cell mem-
branes of the clones. Also, in deep orange (dor−)
clones, Hh+Ptc+ vesicles accumulate. These
results suggest that Hh bound to Ptc normally
is internalized and degraded (Chen & Struhl
1996, Torroja et al. 2004).

Similarly, in the embryo, endocytosis
shapes the Hh gradient. Cytoplasmic Hh-
containing particles are Ptc dependent, sug-
gesting that Hh bound to Ptc is internal-
ized. Also, when the Hh signal receiving cells
express shiDN (shi dominant negative), the
spreading of Hh is too broad. Moreover, there
is much less Hh observed in cells that over-
express Ptc. Finally, most Hh+Rab7+ vesi-
cles are also Ptc+, and in ptc− cells there is
no Hh/Rab7 colocalization. Taken together,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 5
Models for roles of endocytosis in morphogen
signaling pathways. Possible roles for endocytosis
in three morphogen signaling pathways are
depicted. (a) Dpp signaling may occur from
Sara-containing endosomes. (b) Hh signaling
results in Smo activation, which may require Smo
relocalization from an endosome to the plasma
membrane. (c) Activation of Wg signaling results
in movement of Dsh and Axin to the plasma
membrane, which results in stabilization of Arm.
See text for details.
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Planar transcytosis:
a model for dispersal
of protein
morphogens in
which the protein,
once secreted from
the source cell,
spreads through cell
distances by repeated
rounds of
endocytosis and
resecretion

Shi: Shibire

these results suggest that Ptc targets Hh to
the lysosome (Gallet & Therond 2005).

Endocytosis and endosome trafficking
may be integral elements of Hh signaling
in the wing disc. Hh/Ptc binding activates
signaling by relieving inhibition of the activity
of another membrane protein, Smoothened
(Smo). Ptc is a 12-pass membrane protein,
and Smo is a 7-pass membrane protein. The
mechanism of the Ptc/Smo interaction is un-
clear (see Hooper & Scott 2005 for discus-
sion). There are two general kinds of models:
those in which Ptc and Smo interact directly,
and those in which they interact indirectly. In
both models, relocalization of Smo from en-
dosomes to the plasma membrane is required
for signaling. However, there are also contra-
dictory data suggesting that endocytosis is dis-
pensible for Hh signaling.

In the absence of Hh, Smo is observed
mainly in endosomes, and Ptc is both in en-
dosomes (most Ptc does not colocalize with
Smo) and at the cell surface. In the presence
of Hh, Ptc goes to lysosomes, and Smo goes
to the plasma membrane (Denef et al. 2000,
Incardona et al. 2002, Evans et al. 2003, Zhu
et al. 2003, Stegman et al. 2004). The activ-
ity of Smo coincides with its localization at the
plasma membrane: GFP-Smo relocates to the
cell surface when Hh is added to cells, Ptc in-
activation results in Smo at the plasma mem-
brane in the absence of Hh, Smo with acti-
vating mutations is at the plasma membrane
constitutively, Smo modified so that it is al-
ways at the cell surface is active constitutively,
and Smo at the plasma membrane is inactive
only when Ptc is also retained there (Zhu et al.
2003, Nakano et al. 2004).

If Hh and Smo interact indirectly, a likely
model is that Hh/Ptc binding at the plasma
membrane results in relocalization of Smo-
containing endosomes to the plasma mem-
brane and thus in Smo activation (Figure 5b).
In the direct interaction model, Ptc and Smo
are initially together at the membrane, and
Hh/Ptc binding separates Ptc from Smo. This
may occur by internalization of Hh/Ptc or by

internalization of Hh/Ptc/Smo and then traf-
ficking of Hh/Ptc to the lysosome and Smo
back to the membrane.

In Drosophila there may be more evidence
in favor of the indirect model. In the absence
of Hh, Smo is not observed at the membrane
with Ptc (see above). Also, a mutant Ptc pro-
tein that cannot be internalized is able to acti-
vate Hh signaling (Torroja et al. 2004). Most
of the evidence for direct interaction between
Ptc and Smo comes from experiments with
Shh in vertebrate cells (Incardona et al. 2002,
Stegman et al. 2004). Ptc and Smo colocal-
ize extensively before Shh treatment. In the
presence of Shh, they enter endosomes to-
gether. Subsequently, Smo endosomes segre-
gate away from Shh/Ptc endosomes, which go
to the lysosome. The SSD (sterol-sensing do-
main) of Ptc, which may target Ptc to a spe-
cific membrane compartment, is not required
for Hh/Ptc binding but is required for Ptc
to inhibit Smo. This suggests that Hh bind-
ing must inactivate the SSD and thereby di-
vert Ptc into a distinct trafficking route, pos-
sibly to get it away from Smo (Chen & Struhl
1996, Martin et al. 2001, Strutt et al. 2001,
Kuwabara & Labouesse 2002).

One major caveat to all these models is that
they all require endocytosis of Smo, and Hh
signaling can be activated in shi− wing disc
cells (Han et al. 2004, Torroja et al. 2004) and
in embryos (Gallet & Therond 2005). One
way to resolve this apparent paradox is if the
shi alleles do not abolish endocytosis com-
pletely.

If Ptc does regulate Smo subcellular local-
ization indirectly, what might be the mech-
anism? Smo is phosphorylated as a result of
Hh/Ptc binding, but it is unclear whether
that is a cause or an effect of plasma mem-
brane localization (Denef et al. 2000). It may
be relevant that Ptc has an RND (resistance-
nodulation-cell division) permease domain
that is required for it to inhibit Smo. One idea
is that Ptc at the membrane may inhibit endo-
somal Smo relocalization to the plasma mem-
brane through regulation of the entrance into
the cell of a small molecule, for example, an
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activator of a Smo phosphatase. Hh/Ptc bind-
ing may block the permease activity, resulting
in Smo phosphorylation (Martin et al. 2001,
Strutt et al. 2001, Taipale et al. 2002, Johnson
et al. 2002).

Targeting release of Hh-containing
endosomes to specific membrane com-
partments in the embryo correlates with
target gene activation. In embryos, the re-
gion of the cell from which Hh is secreted gov-
erns the response of the receiving cells (Gallet
et al. 2003). For wg expression to be activated,
secretion of Hh from the source cell in an
anterior direction must be apical. The forma-
tion of the apical endosomes requires choles-
terol modification of Hh; an SSD-containing
protein called Dispatched; and HSPG pro-
teins, which mediate Hh spreading. By con-
trast, posterior signaling (rho activation) does
not require cholesterol or HSPGs, and baso-
lateral Hh secretion is sufficient. These curi-
ous observations may suggest that receptors
and/or signaling complexes are localized
differently in anterior versus posterior cells.

Wingless

Wg gradient formation in embryos
requires endocytosis and asymmetric
trafficking to lysosomes, and perhaps
transcytosis. Most evidence suggests that
in the embryo, the role of endocytosis is to
shape the Wg gradient. The Wg gradient
emanates from a single row of cells in each
segment and is initially symmetrical. The
gradient becomes asymmetrical [one cell
posterior and four cells anterior (Figure 2)]
owing to increased Wg degradation in cells
posterior to the source (Dubois et al. 2001).
The main evidence for this model comes
from experiments in which an HRP-Wg
fusion protein is expressed as the sole source
of Wg protein. In contrast to the Wg portion
of the fusion protein, HRP (horse radish
peroxidase) is stable in late endosomes and
thus serves as a marker for endosomes in
which HRP-Wg was present. In cells anterior

chc: clathrin heavy
chain

to the HRP-Wg source, vesicles (presumed
to be early endosomes) contain both HRP
and Wg, whereas vesicles (presumably late
endosomes) in posterior cells contain HRP
only. Also, posterior cells have four times
more HRP-containing MVBs than do ante-
rior cells. Moreover, in dor mutants, in which
endosomes cannot fuse with the lysosome,
Wg accumulates in giant MVBs. Finally, in
chc (clathrin heavy chain) mutants, in which
no clathrin-dependent endocytosis can take
place, Wg disperses further from the source
and accumulates at the plasma membranes
of posterior cells. Genetic experiments that
implicate HSPG proteins in Wg gradient
formation support the hypotheses that Wg
is dispersed through extracellular diffusion
and that its dispersal limited by endocytosis
(Desbordes et al. 2005).

There is, however, contradictory evidence
in favor of a role for endocytosis (planar tran-
scytosis) in Wg dispersal in embryos. In shi-
mutant embryos, extracellular Wg accumu-
lates around the source cell and does not
spread (Bejsovec & Wieschaus 1995, Moline
et al. 1999). The apparent contradiction be-
tween these results and the chc experiments
described above (Dubois et al. 2001) remains
unresolved.

The Wg gradient in the wing disc is shaped
by endocytosis. Like Dpp and Hh, Wg pro-
tein in the wing disc is dispersed by extracel-
lular diffusion facilitated by HSPGs, and the
Wg gradient is shaped by receptor-mediated
endocytosis. The main evidence that endocy-
tosis is dispensible for Wg dispersal is that Wg
spreads extracellularly through shi− cell clones
(Strigini & Cohen 1999). Recent experi-
ments indicate that like Hh, Wg moves ex-
tracellularly in lipophorin particles (Panakova
et al. 2005). These particles, also called argo-
somes, were thought originally to be plasma
membrane–containing vesicles that move Wg
from cell to cell by planar transcytosis (Greco
et al. 2001). In cells that express lipophorin
RNAi, Wg spreads over shorter distances, and
long-range signaling is disrupted.
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The Wg gradient is shaped by two re-
ceptors: Frizzled 2 (Fz2), a seven-pass trans-
membrane receptor, captures Wg and pro-
vides an internalization signal, whereas Arrow,
a single-pass transmembrane receptor related
to the LDL receptor, provides a lysosomal
trafficking signal (Piddini et al. 2005). Wg and
Fz2 are observed together in endocytic vesi-
cles, and Wg accumulates intracellularly in
dor or hrs-mutant cells, suggesting that Wg is
normally degraded in lysosomes. Overexpres-
sion of Fz2-gpi, a Fz2 protein that can bind
extracellular Wg but cannot be internalized,
results in less Wg endocytosis and a more ex-
tensive Wg gradient. This result suggests that
Wg/Fz2 endocytosis restricts the range of Wg
signaling. However, overexpression of wild-
type Fz2 results in Wg stabilization (Cadigan
et al. 1998). This paradox was resolved by the
observation that co-overexpression of Arrow
suppresses the stabilization effect on Wg of
Fz2 (Piddini et al. 2005). How Arrow targets
Wg to the lysosome is unknown.

Wg signaling requires relocalization of
Dishevelled and Axin. The activation of
Wg signaling is independent of endocytosis;
overexpression of Wg in chc− embryos results
in naked cuticle, indicative of Wg signaling
(Dubois et al. 2001). However, intracellular
trafficking of vesicles containing Dishevelled
(Dsh) protein determines the specificity of the
signal.

Fz and Dsh mediate Wg signaling through
the Armadillo (Arm) protein and also are part
of an otherwise distinct pathway for determin-
ing planar cell polarity (PCP) (Wharton 2003,
Seto & Bellen 2004). When at the plasma
membrane, Dsh functions in the PCP path-
way, and when in endosomes, in Wg signal-
ing (Figure 5c). Dsh mutants with impaired
plasma membrane association affect PCP but
not Wg signaling, and Dsh mutants with im-
paired vesicular localization disrupt Wg sig-
naling only (Yanagawa et al. 1995, Rothbacher
et al. 2000, Axelrod et al. 1998, Boutros
et al. 1998, Axelrod 2001, Penton et al.
2002).

Another protein in the Wg signaling path-
way, Axin, is also regulated by endosomal traf-
ficking (Figure 5c). Axin is a component of a
complex that phosphorylates Arm, leading to
Arm degradation (Hamada et al. 1999, Willert
et al. 1999, Cliffe et al. 2003). In response to
Wg signaling, and dependent on Dsh, Axin re-
locates from endosomes to the plasma mem-
brane (Cliffe et al. 2003). Axin relocalization
correlates with Arm stabilization, suggesting
that Axin at the plasma membrane cannot
phosphorylate Arm.

NOTCH SIGNALING

Notch Pathway

Notch signaling regulates numerous devel-
opmental decisions in probably all Drosophila
tissues. The Notch receptor is a single-pass
transmembrane protein that in Drosophila has
two different transmembrane ligands, Delta
(Delta) and Serrate (Ser). Ligand binding
activates cleavage of the Notch extracellu-
lar domain (S2 cleavage) by an ADAM pro-
tease, which is then followed by cleavage of
the intracellular domain (S3 cleavage) by the
γ-secretase complex. The released intracellu-
lar domain enters the nucleus, where, along
with Suppressor of Hairless [Su(H)], it regu-
lates target gene expression (Figure 6). (See
LeBorgne et al. 2005a for a recent review of
Notch signaling and endocytosis.)

The role of endocytosis in Drosophila
Notch signaling has been studied in cell cul-
ture (S2 cells) and in vivo, mainly in wing
and eye imaginal discs and in developing bris-
tles (Figure 7). In the wing disc, signaling by
Delta and Ser that specifies the wing margin
at the DV compartment boundary has been
analyzed. The role of endocytosis in Notch
signaling in the eye disc has been best defined
in the ommatidial preclusters that emerge just
posterior to the morphogenetic furrow. Delta
signaling from photoreceptor R2/5 and R3/4
precursors prevents adjacent precluster cells
from becoming ectopic R-cells. Bristles orig-
inate from a sensory organ precursor (SOP)
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cell called pI that divides to give rise to a neu-
ral precursor (pIIb) and a nonneural cell (pIIa)
whose fates are determined by Notch/Delta
signaling. Asymmetric distribution within pI
of cytoplasmic determinants that regulate en-
docytosis results, after mitosis, in pIIb sending
a Delta signal that activates Notch in pIIa.

Endocytosis of Notch Ligands by
Signaling Cells Is Required for
Notch Activation in Receiving Cells

A surprising observation is that Notch ac-
tivation in the receiving cell requires in-
ternalization of the ligand by the signaling
cell (Seugnet et al. 1997; Parks et al. 2000;
Pavlopoulos et al. 2001; Lai et al. 2001; Itoh
et al. 2003; Le Borgne & Schweisguth 2003;
Li & Baker 2004; Overstreet et al. 2004;
Wang and Struhl 2004, 2005). In the wing
and eye discs, three key players in this pro-
cess are known: two RING (Really Interesting
New Gene) finger E3 proteins—Neuralized
(Neur) and Drosophila Mind bomb (D-mib)—
and Liquid facets (Lqf), the Drosophila ho-
molog of endocytic epsin. In the simplest
model for the mechanism of ligand internal-
ization, the intracellular domain of Delta or
Ser is monoubiquitinated by either Neur or
D-mib, and Ub serves as a signal for endocyto-
sis (Figure 8). Neur and D-mib are function-
ally interchangeable but expressed in com-
plementary cells (Lai et al. 2005, Le Borgne
et al. 2005b, Pitsouli & Delidakis 2005, Wang
& Struhl 2005). Lqf, an endocytic adaptor
protein, is essential specifically for clathrin-
mediated endocytosis of Delta (Cadavid et al.
2000; Overstreet et al. 2003, 2004; Wang &
Struhl 2004).

Delta and Ser appear to be internalized by
the signaling cell because they are observed in
vesicles that are shi+ dependent (Kooh et al.
1993, Parks et al. 1995, Kramer & Phistry
1996). The results of many different experi-
ments connect Delta and Ser endocytosis with
signaling. First, mutant Delta proteins that
cannot be internalized cannot signal (Parks
et al. 2000). Second, in neur- and D-mib-

cell

cell

Nucleus

Signaling

Receiving

Delta

Plasma membrane 

NotchECD

NotchICD

S2

S3

NotchICD

Figure 6
Notch signaling pathway. Upon ligand binding, Notch is cleaved once
extracellularly (S2) and once intracellularly (S3). Intracellular cleavage
allows a fragment of Notch to enter the nucleus, where it regulates
transcription of target genes. Endocytosis is important in both the signaling
and receiving cells. See text for details.

Lqf: Liquid facets

mutant cells, Delta and Ser accumulate on
the plasma membrane owing to a failure to
be internalized, and genetic analysis indicates
that neur and D-mib are required in the sig-
naling cells. In SOPs, Neur is asymmetri-
cally localized within pI and is inherited ex-
clusively by the neural precursor cell pIIb.
When pI is neur−, two pIIb cells are pro-
duced because pIIb cannot activate Notch in
its neighbor, and Delta accumulates on the
membranes of both cells. Antibody uptake ex-
periments show that Delta fails to be inter-
nalized in the absence of Neur. Mosaic anal-
ysis indicates that the requirement for neur+

is in pIIb (LeBorgne & Schweisguth 2003).
Similar conclusions were reached in wing and
eye discs for neur and D-mib function in inter-
nalization of both Delta and Ser (Pavlopoulos
et al. 2001, Lai et al. 2001, Li & Baker 2004,
Overstreet et al. 2004, Le Borgne et al. 2005b,
Pitsouli & Delidakis 2005, Wang & Struhl
2005). Finally, clonal analysis in the eye and
wing discs show that lqf + is required in the
signaling cells to activate Notch in the re-
ceiving cells, and Delta or Ser accumulates
on the plasma membranes of lqf-mutant cells
(Overstreet et al. 2004; Wang & Struhl 2004,
2005). lqf + function requires neur+ or D-mib+
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Figure 7
Notch signaling events during Drosophila development, for which Notch
ligand endocytosis by the signaling cell has been shown to be required for
signaling. (a) The DV boundary of the wing disc is defined by Notch
activation (Nact), which turns on Wg expression. Notch activation is
confined to a stripe of cells through differential expression and activation
of two different Notch ligands, Serrate (Ser) and Delta (Dl). Ser is
expressed by dorsal cells but is an active ligand only for Notch expressed
by ventral cells. Conversely, Dl is expressed by ventral cells but is an
active Notch ligand only in dorsal cells. Signaling by either Dl or Ser
requires Lqf-mediated endocytosis of ligand by the signaling cells. (b)
Precluster cells not destined to become photoreceptors (blue) are excluded
from developing ommatidia by activation of Notch. Photoreceptor cell
precursors R2/5 and R3/4 send a Dl signal to the blue cells that depends
on Lqf-mediated endocytosis. (c) In the peripheral nervous sytem, an SOP
divides, and one daughter cell (pIIb) is specified as a neural precursor and
prevents neural development of the other daughter cell (pIIa) through
Notch/Delta signaling. Delta signaling by pIIb and Notch activation in
pIIa require Delta internalization by pIIb. See text for details.

activity, which suggests that Lqf, which has
Ub interaction motifs (UIMs), may recognize
mono-Ub on the ligand intracellular domain
(Wang & Struhl 2004).

Why is ligand internalization by the sig-
naling cell required for signaling? Many mod-
els have been proposed; they fall into two
classes (see Le Borgne et al. 2005a for a re-
view) (Figure 9). In the first class, one sup-
poses that ligand is internalized after binding
to the Notch receptor. In this case, ligand en-
docytosis may facilitate S2 cleavage, perhaps
by exerting force on the cleavage site. Alterna-
tively, ligand may be internalized prior to re-
ceptor binding. In this case, ligand would be
processed endosomally into the active form
and either secreted as exosomes or recycled
back to the plasma membrane.

The observation that Delta and the Notch
extracellular domain (Necd) sometimes can be
observed to colocalize in endosomes supports
the idea that Delta internalization facilitates
S2 cleavage (Parks et al. 2000). The exo-
some model may explain the long-range ac-
tivity of Delta that is sometimes observed
(De Joussineau et al. 2003, Le Borgne &
Schweisguth 2003). Evidence is accumulating
in favor of the recycling model, which was
first proposed as a result of an observation
on the function of Lqf. In the wing and eye
discs, most of the endosomal Delta observed
is internalized in a lqf +-independent manner.
This led to the proposal that Lqf-dependent
internalization of Delta routes it to a specific
endosomal pathway for activation and recy-
cling. The idea is supported by an experi-
ment in which replacement of the Delta intra-
cellular domain with an LDL receptor frag-
ment that mediates recycling results in lqf +-
independent Delta signaling (Wang & Struhl
2004).

Experiments in SOPs with rab11 and sec15
mutants lend more support to the recycling
model (Figure 10). pIIb is ensured to be-
come the Delta signaling cell by its exclusive
inheritance of Neur (see above) and Numb
(see below). Similarly, there is a mechanism
to ensure that pIIa becomes the receiving
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cell: It involves regulation of recycling en-
dosome formation (Emery et al. 2005, Jafar-
Nejad et al. 2005). Formation of Rab11-
containing endosomes is blocked in pIIa by
inhibition of recruitment of necessary fac-
tors, one of which is a protein called Nu-
clear fallout (Nuf), to the centrosome. Rab11-
containing endosomes, some of which contain
Delta, form near the centrosome only in pIIb.
Expression of a dominant-negative Rab11 in
SOPs causes Delta to accumulate in large
Hrs-containing vesicles. The asymmetry of
Rab11 endosome formation was connected
to Delta signaling and cell fate specification
with the following experiment: pIIa may be
transformed into a Delta signaling cell (pIIb)
by co-overexpressing Nuf and constitutively
active Rab11, which induces recycling endo-
some formation (Emery et al. 2005). Sec15,
a homolog of a yeast protein required for
secretory vesicle transport, colocalizes with
Rab11 in pI and both progeny cells. Sec15
is required for Delta trafficking in pIIb and,
presumably through an effect on Delta sig-
naling, Notch activation in pIIa. sec15 mu-
tants undergo pIIa-to-pIIb transformations
because Notch is not activated. In sec15 mu-
tants, Rab11 is upregulated and distributed
abnormally, and Delta+/Rab5+/Hrs+ vesicles
accumulate aberrantly. These results suggest
that although Sec15 is distributed symmetri-
cally in pIIa and pIIb, it is required in pIIb for
Delta endosome recycling ( Jafar-Nejad et al.
2005, Wu et al. 2005).

Inhibition of Notch Activation in
Signaling Cells by Endocytosis

In SOPs, there are two different pathways in
pIIb for ensuring that it becomes the signaling
cell; both involve endocytosis. Neur, an es-
sential activator of Delta, is inherited by pIIb
only (see above). Numb, a negative regulator
of Notch, and α-adaptin, an AP-2 subunit,
are also segregated to pIIb (Rhyu et al. 1994,
Berdnik et al. 2002, Le Borgne & Schweisguth
2003). The idea is that Numb and α-adaptin
internalize Notch and/or a four-pass trans-

Delta

Neur

AP–2

Lqf

Clathrin

Ub

Figure 8
Mechanism of Delta internalization. A simple model showing the proteins
involved in Delta (or Ser) internalization that leads to signaling are shown.
In complementary cell types, either Neur or D-mib ubiquitinate Delta. Lqf
(epsin) is essential for endocytosis of Delta that leads to signaling. Lqf binds
the plasma membrane with its N terminus, and it also binds Ub, clathrin,
and AP-2. It is not clear why Lqf is required specifically for Delta signaling.

membrane protein called Sanpodo (Spdo),
which results in Notch and/or Spdo degrada-
tion and the prevention of Notch activation in
pIIb (Figure 10) (Dye et al. 1998, Skeath &
Doe 1998, O’Connor-Giles & Skeath 2003,
Hutterer & Knoblich 2005).

In numb mutants, Notch is activated in the
presumptive pIIb, transforming it into pIIa
(Guo et al. 1996). Numb binds to the intra-
cellular domain of Notch and α-adaptin, sug-
gesting that the function of Numb is to endo-
cytose Notch in pIIb (Guo et al. 1996, Berdnik
et al. 2002). However, as Notch levels at the
plasma membrane appear the same in pIIa and
pIIb, the target of Numb may be Spdo.

The role of Spdo in Notch/Delta signal-
ing is controversial. In spdo mutants, Notch is
not activated in the presumptive pIIa, so it is
transformed into pIIb (Hutterer & Knoblich
2005, Roegiers et al. 2005). Several studies
indicate that Spdo is at the plasma mem-
brane in pIIa but is exclusively endosomal in
pIIb, which led to a model in which Spdo at
the membrane is required for Notch activa-
tion in pIIa. It follows, then, that Numb may
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Receiving
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Figure 9
Models for why Delta endocytosis by the signaling cells is required for
signaling. Delta internalization by the signaling cell may facilitate S2
cleavage (pulling). Alternatively, Delta endocytosis may enable the
activation of Delta in an endosome as well as its return to the plasma
membrane in active form (recycling). In a similar model, Delta
internalization allows formation of Delta-containing exosomes. See text
for details.

prevent Notch activation in pIIb by promot-
ing Spdo internalization. Numb/Spdo com-
plexes have been identified, and in numb or α-
adaptin mutants, Spdo is not internalized and
instead accumulates at the plasma membrane
(Hutterer & Knoblich 2005, Langevin et al.
2005, Roegiers et al. 2005). A different study
argues that Spdo is required for Notch acti-
vation not in pIIa but in pIIb for Delta recy-
cling. Jafar-Nejad et al. (2005) observe Spdo at
the membrane in both pIIa and pIIb, but only
Spdo+ Delta+ Rab11+ vesicles in pIIb. More-
over, in sec15 mutants, in which Delta cannot

be activated because of a defect in recycling
endosome trafficking (see above), trafficking
of Spdo+ endosomes is aberrant, and Spdo no
longer colocalizes with Rab11. These authors
suggest that Spdo functions in Delta recycling
and that a defect in Spdo localization in sec15
mutants may contribute to the sec15-mutant
phenotype.

Endocytosis and Endosomal
Trafficking of Notch in
Signal-Receiving Cells Regulates
Ligand-Independent Notch
Activation

Notch internalization may also lead to sig-
naling in a ligand and Su(H)-independent
manner from endosomes (Figure 11). Bio-
chemical experiments, genetic interactions,
and imaging in the wing disc show that
this event is regulated by three different
E3 ubiquitin-ligase proteins. Two HECT
(homologous to E6-AP C terminus)-domain
E3s, Nedd4 (neural precursor cell–expressed
developmentally downregulated 4) and Su(dx)
(Suppressor of deltex), target Notch for
lysosomal degradation, and Dx (Deltex), a
RING E3, antagonizes their activities, shunt-
ing Notch into an endosomal signaling path-
way. All three E3s are present in endosomes,
but they may also be present at the plasma
membrane. Thus, it is not clear where the
ubiquitination events occur.

Notch appears to be internalized and sent
through the degradative pathway. Notchicd

and Notchecd are found together in Hrs+ en-
dosomes, indicating that nonactivated (non-
cleaved) Notch is internalized (Fehon et al.
1990, Wilkin et al. 2004). Also, in hrs− cells
in which lysosomal degradation is blocked,
Notch accumulates in large vesicles ( Jekely
& Rorth 2003).

Notch is targeted for lysosomal degrada-
tion by Nedd4 and Su(dx), which prevent
Notch from entering the recycling path-
way. Nedd4 ubiquitinates Notchicd. Loss-of-
function Nedd4 or Su(dx) mutants have lit-
tle effect on Notch localization or signaling,
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Sec15

Rab11

α-adaptin

Numb

Neur

Ub

Sanpodo

Delta

Activated Delta

Notch

Endosome

SOP

bllpallp

Degrade
Or

Figure 10
How the SOP daughter cell pIIb becomes the Delta signaling cell. Delta signaling by pIIb activates Notch
in pIIa, which prevents neural determination of pIIa. Several different mechanisms ensure that pIIb
becomes the signaling cell and that pIIa becomes the receiving cell. First, Numb, Neur, and α-adaptin
segregate asymmetrically into pIIb and internalize Notch and Sanpodo, leading to their degradation.
Second, Rab11-containing recycling endosomes are able to form only in pIIb. Third, Sanpodo may be
present at the plasma membrane only in pIIa, in which it is required for Notch activation. Alternatively
or additionally, Sanpodo may stimulate Delta internalization and activation in pIIb. See text for details.

perhaps because of redundancy with a third
Nedd4 family member, Dsmurf. However,
overexpression of Nedd4 or Su(dx) pheno-
copies partial loss of Notch activity and re-
sults in Notch accumulation in Rab7+ vesi-
cles. Moreover, overexpression of a dominant-
negative Su(dx) protein leads to missorting
of Notch into Rab11+ vesicles (Fostier et al.
1998, Cornell et al. 1999, Mazaleyrat et al.
2003, Sakata et al. 2004, Wilkin et al. 2004).

Dx promotes ligand-independent and
Su(H)-independent Notch signaling from en-
dosomes. Dx binds Notch and promotes
Notch relocation from the plasma membrane
to vesicles. Notch target gene expression is
reduced in dx mutants, whereas dx overex-
pression leads to cell-autonomous, Notch-
dependent activation of Notch target genes

independent of Delta, Ser, and Su(H) (Hori
et al. 2004). Experiments with Notch alle-
les that produce truncated receptors also sup-
port the existence of a Dx-dependent, Su(H)-
independent signal (Ramain et al. 2001).
In addition, expression of dominant-negative
Rab5 inhibits Dx-mediated Notch activation,
suggesting that ligand-independent Notch
signaling requires that Notch accumulate in
late endosomes (Hori et al. 2004).

Dx activity antagonizes that of Nedd4.
Dx overexpression leads to increased Notch
accumulation in vesicles in vivo, suggesting
that Dx antagonizes Notch degradation (Hori
et al. 2004). Overexpression of dominant-
negative Nedd4 in S2 cells promotes ligand-
independent activation of Notch target genes,
and this effect is enhanced by simultaneous
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Figure 11
Ligand-independent
Notch signaling
from endosomes.
Internalization and
sorting of Notch is
regulated by three
ubiquitin ligases
[Nedd4, Su(Dx), and
Dx]. Notch sorted to
recycling endosomes
may signal from the
endosomes in a
ligand-independent
manner. See text for
details.

overexpression of Dx. Thus, dominant-
negative Nedd4 prevents Notch-containing
endosomes from entering the degradative
pathway, and Dx targets them to an endoso-
mal environment in which Notch can signal
(Sakata et al. 2004).

PROTEIN RECEPTOR
TYROSINE KINASE SIGNALING

The role of endocytosis in receptor tyro-
sine kinase (RTK) signaling has been stud-
ied mainly in vertebrate cells, and there are
many reviews of this work (Carpenter 2000,
Wiley & Burke 2001, Sorkin & von Zastrow
2002, Dikic 2003, Dikic & Giordano 2003,
Miaczynska et al. 2004). Endocytosis attenu-
ates signaling as well as bringing active sig-
naling complexes in endosomes to intracel-
lular locations of effector proteins. In addi-
tion, signaling can regulate the endocytic ma-
chinery itself. Most likely these mechanisms
are conserved in Drosophila. Analysis of RTK
signaling in a few developmental contexts in

Drosophila has revealed some novel mecha-
nisms for regulation by endocytosis.

Hrs Is Required for Attenuation of
RTK Signaling in Embryos

Analysis of hrs mutants has shown that signal-
ing by Drosophila RTKs is attenuated by en-
docytosis. Hrs is homologous to yeast Vps27p
(vacuolar protein sorting 27p), which reg-
ulates trafficking of endosomes to the vac-
uole, the yeast equivalent of the lysosome
(reviewed in Raiborg et al. 2003). As men-
tioned above, Hrs has a FYVE domain that
binds endosomal membranes, and it also has
a UIM. Electron microscopy of hrs-mutant
larval garland cells (large cells with a high
rate of endocytosis) shows that hrs+ is re-
quired for membrane invagination in MVB
formation, a prerequisite for lysosomal tar-
geting (Lloyd et al. 2002). This activity of
Hrs is needed to downregulate signaling from
two RTKs, Torso and Egfr (epidermal growth
factor receptor) (Figure 12).

Torso signaling is required for specifica-
tion of the head and tail (the anterior-most
and posterior-most regions, respectively) of
the embryo (Li 2005). The Torso receptor is
expressed ubiquitously but binds a diffusible
ligand secreted at the poles. Ligand binding
activates the Ras/MAPK (mitogen activated
protein kinase) pathway. In hrs mutants,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 12
Regulation of RTK signaling by Hrs. (a) Hrs is
required for formation of internal vesicles in
MVBs, which fuse with the lysosome.
Hrs-dependent degradation of activated RTKs is a
mechanism to attenuate signaling. (b) The termini
of the embryo are specified by activation of the
RTK Torso by its ligand Trunk. Hrs-dependent
degradation of activated Torso receptors away
from the termini controls patterning. vm, vitelline
membrane; pm, plasma membrane; pvs,
perivitelline space. (c) The embryonic ventral
ectoderm is specified by Egfr activation by the
ligand Spitz. Hrs-dependent degradation of
activated Egfr prevents broadening of the ventral
region of the embryo. See text for details.
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Migrating border cell 

Oocyte–nurse cell complex 

Follicle cell Nurse cell 

Border cell 

Nucleus

Pvf1

Gurken

Pvr

Egfr

Ub

Figure 13
Control of cell migration by Cbl-dependent RTK endocytosis. Drosophila egg chambers consist of
somatic cells (follicle cells) and 16 germ line cells (15 nurse cells and 1 oocyte). Particular follicle cells
called border cells (green) migrate to the oocyte, guided by the RTKs Egfr and Pvr, whose ligands are
expressed in the oocyte. The direction of border cell migration is controlled by concentrating the RTKS
to the cell cortex at the leading edge of movement. This is achieved through endocytosis of receptors not
at the leading edge and through their recycling to cortex at the edge of movement. See text for details.

signal activation is broadened spatially and
prolonged temporally owing to a failure of
Torso degradation (Lloyd et al. 2002).

Egfr signaling in the embryos is required
for ventral ectoderm determination (reviewed
in Shilo 1992, Schweitzer & Shilo 1997, Casci
& Freeman 1999). The active form of ligand
Spitz is secreted by cells along the ventral mid-
line, which leads to activation of Egfr and the
Ras/MAPK pathway in the ventral ectoderm.
Embryos lacking hrs die with numerous mor-
phological defects, suggesting that many dif-
ferent RTK signaling pathways are disrupted.

In these embryos, Egfr is overactivated (lev-
els of active Egfr are increased), resulting in a
broadened area of receptor activation and an
expansion of the region of ventral fate (Lloyd
et al. 2002).

Signaling by other RTKs and also other
receptors is attenuated by Hrs-dependent
degradation. hrs-mutant epithelial cells accu-
mulate multiple signaling receptors in endo-
somes. Most of the receptors are not bound
to ligand, indicating that turnover of both ac-
tive and inactive receptors attenuates signal-
ing ( Jekely & Rorth 2003).
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Cbl-Mediated Endocytosis Restricts
RTK Signaling Spatially in Border
Cells During Oogenesis

Cbl (Casitas B-cell lymphoma) is a RING E3
ubiquitin ligase that in vertebrate cells has
been shown to target RTKs for lysosomal
degradation (reviewed in Thien & Langdon
2001, Rubin et al. 2005). Analysis of the D-cbl-
mutant phenotype in oogenesis reveals that
endocytosis of activated RTKs is a mechanism
for restricting signaling spatially within single
follicle cells called border cells.

Border cells, which form an eight-cell clus-
ter, migrate to the oocyte in a stereotyped
manner during oogenesis (Starz-Gaiano &
Montell 2004) (Figure 13). Signaling by Pvr
and Egfr guides the migration (Duchek &
Rorth 2001, Duchek et al. 2001). Border cells
express the two RTKs, and oocytes express the
ligands Pvf1 and Gurken, respectively. Many
D-cbl− border cells fail to migrate, and this
phenotype is suppressed in heterozygotes for
the Egfr ligand (gurken−/gurken+) and en-
hanced by Pvr or Egfr overexpression. This
suggests that in D-cbl mutants, RTK signaling
is in some sense overactive. However, it is not
an increased level of RTK signaling but loss
of localization that causes the D-cbl-mutant
phenotype. In wild-type border cells, active
RTK, monitored by antiphospho-tyrosine, is

localized at the cell cortex, at the leading edge
of cell movement. In D-cbl mutants, activated
RTK is mislocalized all around the cell cortex.
Moreover, expression of dominant-negative
Shi in border cells results in the same ef-
fect. Taken together, these results suggest a
model in which endocytosis of active RTKs
leads to their recycling to regions of higher
signaling and concentrates the signaling ac-
tivity to one edge of the cell ( Jekely et al.
2005).

CONCLUDING REMARKS

Who could have imagined that cell signal-
ing, and thereby cell fate, would be regu-
lated through baroque mechanisms involv-
ing endocytosis and endosomal trafficking?
Drosophila has been a premier model system
for developmental biologists interested in cell
patterning. It is becoming increasingly ap-
parent that to understand the complexities of
the proteins and signaling pathways that pat-
tern cells, we have to look further than the
cell membrane and nucleus. For years, endo-
somes have been lackluster organelles to most
Drosophila researchers. Endosomes are now
having their day, but with the large number
of laboratories hot on their trails, probably
not the last laugh!

SUMMARY POINTS

1. Endocytosis is a mechanism for downregulating signaling by internalizing ligand-
bound as well as inactive receptors and targeting them for the lysosome.

2. Endocytosis upregulates signaling as some receptors signal from endosomes.

3. Receptor-mediated endocytosis contributes to the shaping of morphogen gradients
by removing morphogen from the extracellular space.

4. Ligand activation in endosomes and subsequent recycling may regulate signaling.

5. Regulation of endosome formation is a means to control signaling.

6. Regulation of endosomal routing is a means to control signaling outcomes.

7. Spatially restricted endocytosis of receptors used as guidance cues for migrating cells
can control the direction of cell movement.
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UNRESOLVED ISSUES AND FUTURE DIRECTIONS

1. Does planar transcytosis contribute at all to morphogen gradient formation?

2. How does Hh/Ptc binding relieve Smo inhibition by Ptc, and does the mechanism
involve endosomal trafficking?

3. Why must Notch ligands be internalized in order to signal, and why is epsin (Lqf)
essential for this?

4. What are all the mechanisms by which endocytosis regulates RTK signaling?
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