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Glossary

Cephalochordata: also called lancelets, or amphioxus, these are the closest

living non-craniate relatives of vertebrates, and contain all chordate features,

yet lack the cranial and sensory complexity of the vertebrate clade. Their

position in chordate phylogeny makes these organisms ideal for comparisons

with vertebrates.

Chordata: the deuterostome phylum that includes urochordates, cephalochor-

dates and vertebrates. Chordates have a notochord flanked by muscle, a dorsal

nervous system, pharyngeal gill slits, and a postanal tail. These characters have

beenmodified or lost in some lineages, but are usually present at some point in

development.

Urochordata: also called tunicata, because of an outer covering, or ‘tunic’, in

adults, urochordates are the most basal chordates. Adults filter-feed and bear

few visible traces of chordate affinity aside from a pharyngeal basket perforated

with gill slits. Other chordate features, notably a dorsal nervous system and

notochord, are present in the larvae. Ascidian urochordates, such as Ciona,

Halocynthia,Molgula and Styela, have been used as developmental models for

more than a century.

Vertebrata: characterized by a vertebral column, this group includes the

jawless lamprey and all jawed vertebrates including cartilaginous fishes

(e.g. sharks), ray-finned fishes (e.g. teleost fish) and lobe-finned fishes

(e.g. coelacanth, tetrapods). Vertebrates, together with the hagfish, comprise

the craniata, a group characterized by a bony or cartilaginous skull as well as
Models of vertebrate development frequently portray

the organizer as acting on a largely unpatterned embryo

to induce major components of the body plan, such as

the neural plate and somites. Recent experiments

examining the molecular and genetic basis of major

inductive events of vertebrate embryogenesis force a re-

examination of this view. These newer observations,

along with a proposed revised fate map for the frog

Xenopus laevis, suggest a possible reconciliation

between the seemingly disparate mechanisms present

in the ontogeny of the common chordate body plan of

vertebrate and invertebrate chordates. Here, we review

data from vertebrates and from an ascidian urochordate

and propose that the organizer was not present at the

base of the chordate lineage, but could have been a later

innovation in the lineage leading to vertebrates, where

its role was more permissive than instructive.

Introduction

The chordate body plan, represented in extant organisms
by urochordates (see Glossary), cephalochordates and
vertebrates, is more than half a billion years old.
Phylotypic features of chordates include a notochord
flanked by muscle, a dorsal nervous system, pharyngeal
gill slits and a postanal tail. The key events that led to the
evolution of the chordate body plan are unknown, but new
observations from both vertebrates and ascidian urochor-
dates could shed new light and overturn long-held
assumptions about the role of the organizer in the
establishment of the chordate body plan. Although
Spemann’s organizer of the frog, or its equivalent
(Hensen’s node in chick, the node of mouse and the shield
of zebrafish), has figured large in models of the vertebrate
body plan, ascidians appear to have no tissue orthologous
to the organizer based on in situ hybridization surveys and
data on neural induction [1,2]. Nevertheless, ascidians
arrive at the same fundamental body plan. This would
seem to require one of two scenarios: either the
urochordate lineage lost the organizer and has evolved
independent mechanisms to generate a chordate body
plan, or the lineage leading to vertebrates has added the
organizer. We review recent developmental and molecular
data that call in question the assumption of the primacy of
the chordate organizer, and offer a revised scenario for the
history of patterning of the chordate body.
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A revised fate map for Xenopus

Spemann’s organizer in Xenopus, centered on the early
involuting blastopore lip, has long been thought to be
central in specifying and directing body axis formation.
The prevailing model for organizer function in Xenopus
holds that it is a signaling center that influences
embryonic tissues in their dorsoventral fates depending
on their proximity to the organizer itself [3,4]. The late
blastula fate map – the projection forward in development
of blastula territories to their future location in the larval
or adult body plan – intimately depends on organizer
function under this model: the organizer defines the
future dorsal side of the organism, and regions increas-
ingly distant from the influence of the organizer are
specified as ventral. Accordingly, manipulations reducing
or expanding organizer territory have a profound effect on
both patterning andmorphogenesis and are interpreted as
ventralizing or dorsalizing in their action [5]. The
traditional model places the future dorsoventral axis
from the organizer to the opposite side of the gastrula
(the ‘ventral marginal zone’), and this axis, in turn, lies
orthogonal to the animal/vegetal axis, which runs from the
pigmented portion of the embryo to the yolky portion.

Recently, Lane and others have proposed a radical
realignment of the major embryonic axes in Xenopus
based on new lineage tracing studies and a re-evaluation
of older ones [6–8]. The revised model largely redraws the
Opinion TRENDS in Genetics Vol.21 No.9 September 2005
numerous sensory innovations. Neural crest and ectodermal placodes are

thought to be craniate novelties, but this view has comeunder scrutiny recently.
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fate map: briefly, the revised map reassigns dorsal-ventral
to the animal-vegetal axis, a 908 shift, and anterior-
posterior is proposed for the organizer-contraorganizer
axis (the ‘old’ dorsal-ventral axis). The organizer itself,
which goes on to form the chordamesoderm, is an
exception to these new axes. Its derivatives come to lie
dorsally along the length of the anterior-posterior, but
only after tissue separation at early gastrula stages
between forming chordamesoderm and paraxial meso-
derm enables these tissues to slide past one another.
Under the revised model, somites, dorsal mesodermal
derivatives, arise from mesoderm near the organizer, but
also from opposite the organizer (previously the ‘ventral
marginal zone’), the ‘ventral’-most territory on the fate
map under the traditional model. Presumptive somites
nearer to the organizer are demonstrated to be increas-
ingly anterior, following an anterior-posterior gradient
along the organizer-contraorganizer axis. Blood islands,
ventral mesoderm, are found to arise from territories
opposite the organizer, as on the traditional fate map, but
also nearer to the organizer, that is, ‘dorsal’ under the
previous schema. Like somites, blood islands that map
closer to the organizer are more anterior on the fate map
than those opposite. Dorsal-ventral is reassigned as
animal-vegetal, occupying an embryonic axis along
which no future body axis previously had been mapped.
Somites (dorsal) map to the marginal zone closer to the
animal pole, whereas the blood islands (ventral) map to
the marginal zone closer to the vegetal pole. The two sets
of axes are orthogonal to one another and appear to be
independent; for example, they do not appear to run either
anterodorsal or ventroposterior. So, blood island terri-
tories are always more vegetal, and therefore more
ventral, than prospective somites, but can still be closer
to or farther from the organizer, more anterior or posterior
on the fate map, depending on their ultimate anterior/
posterior assignment. The revised map has profound
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consequences for the interpretation of organizer function,
particularly for manipulations traditionally viewed as
‘dorsalizing’ or ‘ventralizing’ in their effect.
Convergence of fate maps for vertebrate and invert-

ebrate chordates

One striking consequence of the revised fate map is that
the general distribution of major tissue territories within
the embryo, including epidermis, endoderm, neural tissue
and muscle, bear a much closer correspondence with the
distribution for the same territories in the ascidian
urochordate one-cell zygote. Simply put, the fate maps
are more alignable under the new model (Figure 1).
Muscle flanking notochord, or somites in vertebrates,
arises from a much broader swathe, not just a restricted
region close to the presumptive notochord or the site of
gastrulation. This is important, because the new fate map
shows clearly that muscle is derived from areas previously
thought to be too distant from the vertebrate organizer to
be influenced by its ‘dorsalizing’ signal. The similarity of
the Xenopus and ascidian fate maps suggests that the
chordate body plan might have a corresponding general-
ized fate map. Despite the similarity of topography in
presumptive tissue territories, the mechanisms of early
development are thought to be largely different between
urochordates and vertebrates. Ascidian development is
thought to be largely determinative, and vertebrate
development inductive, with the organizer figuring
largely in the induction. New findings challenge both of
these views. Many inductive events have been described
in the ascidian, and indications of organizer-independent
prepatterning of those tissues thought to be induced by
the organizer are being uncovered in Xenopus. All of this
leads one to ask whether the organizer was fundamental
to the evolution of the chordate body plan, or even present
in the primordial chordate.
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Organizer-independent prepatterning suggests a differ-

ent role for the organizer

If the organizer were a more recent addition within the
chordate lineage, it might be expected that some aspects of
patterning the body could occur independently of organi-
zer function. Observations support such a claim, showing
that a great deal of patterning in frog is evident pre-
gastrula, even before the formation of the organizer.myoD
(which encodes the myoblast determination 1 protein)
marks the prospective somitic regions of the embryo – the
broad band of myoD prefiguring the somites is present
early, at blastula stages, and appears even if organizer
formation is prevented by UV treatment or molecular
ablation [9,10]. (Early myoD expression in ‘ventral’
territories of the embryo had been described more than a
decade ago and its incongruence with the older fate map
noted [9,11]; the new fate map resolves this incongruence.)
When the organizer is removed, myoD expression is not
maintained and somites fail to form, pointing to a
permissive/maintenance role for the organizer in the
myogenic pathway. The initial myoD prepattern is
dependent on a maternal factor, eFGF, the Xenopus
ortholog to fibroblast growth factor 4 (FGF4) [12]. This
myoD expression does not depend on zygotically tran-
scribed genes, suggesting that, as in ascidians, the muscle
prepattern is determined maternally [13,14]. Likewise in
blood formation, marginal zone explants isolated at the
blastula stage already contain a prepattern specifying the
vegetal-most region as competent to form ventral blood
islands, independently of organizer function [15].

Much as myoD marks presumptive somitic regions in
an organizer-independent manner, neural-specific tran-
scripts mark prospective neural territories even before
organizer formation. Sox3, SoxD and Geminin, which
causes epidermis to adopt a neural fate when ectopically
expressed, are expressed in the late blastula, before
gastrulation and organizer formation, and Sox3 is
restricted to presumptive neural ectoderm before gastru-
lation [16–18]. Likewise, bone morphogenetic protein
(BMP) signaling is restricted to presumptive epidermal
territories of the ectoderm before organizer formation [19].
Finally, in frog, zebrafish, chick and mouse, neural
differentiation and neural plate formation will take place
even when the gastrula organizer is removed, although
these experiments should be interpreted cautiously,
because complete removal of all traces of the organizer
by surgical means is difficult to confirm [20–23]. This
prepatterning of territories within the fate map, in an
apparent organizer-independent fashion, is consistent
with a scenario in which the organizer has a permissive
role for further differentiation of cells or a maintenance
role later in development, stabilizing gene expression
patterns.

Initiation of neural specification by FGF is conserved in

chordates

The ‘default model’ for the neural specification of ectoderm
holds that the organizer preserves a default neural state
through the secretion of BMP antagonists [24]. Where
BMP signaling is unopposed, further from the organizer in
the animal hemisphere, the ectoderm adopts an epidermal
www.sciencedirect.com
fate. An expanded or reduced organizer will result in
expanded or reduced neural tissue, or the opposite
outcome for epidermis, showing the importance for
organizer function on these ectodermal derivatives during
normal embryogenesis [25,26]. Recent studies from both
amniote and anamniote vertebrates, however, show that
the default model provides an incomplete description of
neural specification and that, specifically, BMP inhibition
alone is not sufficient to induce neural fates [27–29]. In
Xenopus, ectodermal explants express Bmp4 and develop
as epidermis. When explants are cultured with BMP
antagonists, mimicking conditions near the organizer,
neural induction occurs [30]. If the cells from these
explants are dissociated, abolishing cell–cell contact,
cells will again develop neural fates [31]. If BMP4 is
added to dissociated explants, the fate of the ectoderm will
revert to epidermis [32]. These results have been taken to
indicate the sufficiency of BMP inhibition for neural
specification. The explant procedure, however, induces
autocrine Fgf expression [33,34], which subsequent
investigations have shown is also required for neural
specification, in addition to BMP inhibition. Disruption of
FGF receptor function demonstrates that even in the
presence of organizer signals, cells require FGF signaling
to acquire a neural fate [29]. The details in relative timing
and in the degree of interdependence of BMP antagonists
and FGF signaling need to be resolved, but the require-
ment for FGF appears to be conserved in Xenopus, chick
and zebrafish as well [29,35–37]. More strikingly, neural
induction in ascidians also employs FGF signaling as a
first step, although orthologs to vertebrate organizer-
derived BMP antagonists appear to have no role in
ascidian neural induction [2,38]. This apparent broad
conservation has led to the proposition by Delaune and
others that FGF signaling is a ‘conserved initiator of
neural specification’ in chordates [29].

Urochordates and the chordate body plan

Urochordates, or tunicates, exhibit all the important
features of the chordate body plan at some time during
their life cycle. Historically, urochordate development was
seen as mosaic; a stereotyped cell lineage and manipula-
tions separating early blastomeres led investigators to
believe that induction and regulative development were
less important in urochordate ascidians [39]. This view
was not borne out experimentally; important inductive
interactions occur during ascidian embryogenesis –
endoderm specification by dorsal/ventral determinants,
induction of the notochord by the endoderm, and induction
of neural tissue by the spinal cord [40–42]. Other
interactions, for example induction of the spinal cord by
the notochord, remain to be demonstrated, and yet others,
such as the specification of muscle cells, are known to be
determined by intrinsic factors [43]. For many who
investigate the mechanisms of chordate evolution, the
small number of cells (relative to vertebrates) of the
urochordate embryo, a stereotyped cell lineage, and a
compact, polymorphic genome point to an organism that is
simplified to such a degree that it might not reliably
provide clues of its chordate ancestry. However, the nature
of the chordate common ancestor is unknown, and specific
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features of its development, including size, cell number,
and whether it displayed a stereotyped cell lineage,
remain points of speculation. All organisms, whatever
their taxonomic grouping, are a collection of basal and
derived features; and the ascidian urochordate, like
other organisms, requires care when used to make
broad phylogenetic conclusions. Data from ascidians
will ultimately be a part of our picture of the chordate
common ancestor, alongside developmental data from
other organisms, sequence comparisons across phyla
and the fossil record.

One possible scenario is that the chordate ancestor did
have an organizer, but that tunicates have lost most or all
aspects of organizer function in development. According to
this view, the relatively small number of cells comprising
the urochordate embryo and the stereotyped cell lineage
did not require more than simple inductive interactions –
the simplified urochordate tadpole retains chordate
features, but discards the organizer or greatly reduces
its role because the rules of development for such a
simplified chordate have changed and the chordate body
plan can be established by other means. The vertebrate
organizer gives rise to notochord and head mesoderm;
some authors contend that the urochordate notochord
precursor cells might still retain organizer function [44],
albeit reduced, although this has been difficult to test
directly because of the small size of ascidian gastrulas and
the difficulty of tissue transplant. If the urochordate
lineage has lost the organizer, we might expect gene
expression patterns that characterize the organizer to
persist in the urochordate notochord precursor either
because some reduced organizer function is retained, or
because gene expression that originally characterized the
organizer has not been entirely eliminated, even if this
expression is nonfunctional insofar as it contributes to
organizer function.

Ascidian orthologs of vertebrate organizer genes (http://
ghost.zool.kyoto-u.ac.jp/tfst.html) [1] do not appear to be
expressed similarly to vertebrates. This could indicate
that a loss of organizer function is complete and no traces
of an organizer-dependent past remain. An alternative is
that these genes are not active near the site of gastrulation
in ascidians because they never were; these ‘organizer’
genes were only later deployed for that function, in the
lineage leading to cephalochordates and vertebrates, after
its divergence from the urochordate lineage. The mere
presence of ascidian orthologs to vertebrate organizer
genes should not be taken as evidence of an organizer in
the common chordate ancestor; orthologs to these genes
are also present in basal deuterostomes and in proto-
stomes, where they can have entirely different roles.
Nevertheless, the formal possibility remains that in
spite of extensive efforts to characterize urochordate
and vertebrate genomes and to describe gene
expression patterns in these models, common genes
for the organizer might exist, but simply have not yet
been characterized. We favor the view that the absence
of organizer-type gene expression patterns in asci-
dians, rather than pointing to the deficiencies of the
ascidian as a study organism for chordate relations,
could in fact be informative.
www.sciencedirect.com
Concluding remarks

Ultimately, the early evolution of chordates might be
difficult to reconstruct. Our own hypothesis could hinge on
whether urochordates represent a derived or ancestral
state with respect to organizer function, and this can only
be addressed through further comparative studies. Gene
expression and functional data from hemichordates,
which, with echinoderms, make up the nearest outgroup
to chordates, could be used to determine whether any ‘pre-
organizer’ activity of orthologs to vertebrate organizer
genes is evident, directly testing whether the lack of such
expression in ascidians is representative of the chordate
ancestor or merely an indication of idiosyncrasies within
the urochordate clade. Data from another non-vertebrate
chordate, the cephalochordate amphioxus, show that at
least some orthologs to vertebrate organizer genes are
expressed in a similar fashion [45,46]. Additionally,
transplants in amphioxus appear to provide support for
the presence of an organizer [47]. Most currently accepted
phylogenies place urochordates as the outgroup to a
cephalochordate/vertebrate clade; the amphioxus data
would place a latest date on the appearance of the
organizer to the cephalochordate/vertebrate common
ancestor. Amphioxus could be particularly valuable in
determining to what extent the organizer functions in a
permissive or maintenance role, and not in the initiation
of patterning. A broader survey within the vertebrates
might tell us not only whether Xenopus is typical, but
surely will also indicate cases in which the relation
between the organizer, the establishment of the fate
map, and the stabilization of pattern leading to differ-
entiated tissue types has undergone significant modifi-
cation with changing developmental modes, as could have
occurred within the amniotes (within which, e.g. myoD is
not a good marker for presumptive somitic regions
because its expression is first detected long after
gastrulation [48,49]).
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