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Review
Glossary

Dorsal rim area (DRA): in many insect retinas, the DRA contains specialized

photoreceptor cells mediating the behavioral response to linearly polarized

skylight.

Long visual fibers (Lvf): photoreceptor cells whose axons project to the second

neuropil in the insect brain, the medulla.

Microvilli: membranous invaginations of photoreceptor cells containing the

visual pigments (Rhodopsins).

Ommatidium: the unit eye of insect compound eyes, containing neuronal

photoreceptor cells, as well as pigment cells and cone cells.
Independent evolution has resulted in a vast diversity of
eyes. Despite the lack of a common Bauplan or ancestral
structure, similar developmental strategies are used. For
instance, different classes of photoreceptor cells (PRs)
are distributed stochastically and/or localized in differ-
ent regions of the retina. Here, we focus on recent
progress made towards understanding the molecular
principles behind patterning retinal mosaics of insects,
one of the most diverse groups of animals adapted to life
on land, in the air, under water, or on the water surface.
Morphological, physiological, and behavioral studies
from many species provide detailed descriptions of
the vast variation in retinal design and function. By
integrating this knowledge with recent progress in the
characterization of insect Rhodopsins as well as insight
from the model organism Drosophila melanogaster, we
seek to identify the molecular logic behind the adapta-
tion of retinal mosaics to the habitat and way of life of an
animal.

The homologous building blocks of insect retinas
Despite extensive differences in size, shape, and functional
organization, all insect compound eyes share common
ancestry and comprise the same repetitive structure, the
unit eye or ‘ommatidium’ (see Glossary; reviewed in [1,2]).
Ommatidia usually contain a fixed number of neuronal
PRs as well as pigment cells (for optical isolation) and lens-
secreting cone cells [2]. PRs contain light-sensitive Rho-
dopsins within specialized membrane compartments
(rhabdomeres). In some species, rhabdomeres from each
PR are optically isolated (‘open rhabdom’), while in other
species, rhabdomeres are fused together, forming a single
light guide per ommatidium (‘fused rhabdom’) [3]. Varia-
tions in ommatidial design can also exist within the same
retina, resulting in a retinal mosaic. The diverse types of
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retinal mosaics found in different species illustrate the
complex interplay between the outcome of developmental
patterning and the behavioral repertoire of the animal
[4]. Three patterning strategies are common to most insect
retinas and shape the retinal mosaic during development
(Figure 1A): (i) in many cases, ommatidial subtypes with
different chromatic sensitivities are distributed in a sto-
chastic manner (reviewed in [5]); (ii) by contrast, close
proximity to signaling factors emerging from the periphery
of the retina often induces localized specialized ommatidia
(reviewed in [6]); and (iii) finally, the insect retina can be
divided into large territories, zones, bands, or stripes with
different morphological or functional properties. Although
great progress has been made in understanding the molec-
ular genetic mechanisms governing both stochastic and
localized specification in Drosophila, less is known about
the formation of zones, bands, and stripe patterns observed
in many species of insects. Here, we discuss how combining
recent insight from Drosophila with descriptions of retinal
morphology, visual behavior, and physiology from other
insect species can lead to the identification of developmen-
tal principles.

A classification of insect PRs based on homology is diffi-
cult because of the scarcity of consistent traits that differ-
entiate each subtype. Comparison of ommatidia from
Rhabdom: the light-guiding structure formed by individual photoreceptor

membranes (‘rhabdomeres’) of an ommatidium. The rhabdom can be fused or

‘open’, if individual photoreceptors are optically isolated.

Short visual fibers (Svf): photoreceptor cells whose axons terminate in the first

neuropil, the lamina.

Ventral polarization area (VPA): a specialized area in some insect retinas that

contains photoreceptor cells mediating the behavioral response to linearly

polarized light reflected from shiny surfaces, such as leaves or water.
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Figure 1. Insect retinal mosaics: common design principles, evolutionary, and molecular logic. (A) General patterning strategies common to many retinas. (i) Stochastic

specification of retinal units within the epithelium creates a retinal mosaic. (ii) Localized specification of marginal units in response to factors emanating from adjacent, non-

retinal tissue (gray line), in response to short-range signals (gray arrows). (iii) The specification of stripes or bands of retinal units can occur at compartment boundaries

(light green) or within an otherwise seemingly homogeneous retinal field (purple). In some cases, all retinal units located inside a given compartment show the same,

specific specializations (e.g., dark green). (B–D) Examples of evolutionary variation between insect ommatidia. (B) The fruit fly ommatidium (Drosophila melanogaster)

contains eight neuronal photoreceptor cells (PRs), as well as non-neuronal cone cells and pigment cells. Six PRs span the entire thickness of the retina (termed R1–6, green),

while R7 (blue) and R8 (red) are situated on top of each other. Inset: light-gathering organelles (rhabdomeres) of all eight PRs are separated from each other (dark-green and

red circles) creating an ‘open rhabdom’. (ii) Electron micrograph showing the open rhabdom structure with ‘inner PRs’ R7 and R8 located in the center (sectioned at the level

of R7). (C) (i) the ommatidia of a honeybee worker (Apis mellifera) contain nine PRs, eight of which span the entire retina (R1–8, green), while the shorter cell R9 is always

found basally (red). Inset: rhabdomeres of R1–9 are not separated [‘fused rhabdom’, labeled in the electron micrograph section in (ii)]. (D) (i) the ommatidia of many

butterflies, such as the swallowtail Papilio, contain nine PRs, four of which are located in the distal retina (R1–4, blue), while four are found in the basal half (R5–8, green).

Therefore, the PRs in butterfly ommatidia are tiered. Note that the very small cell R9 is always found at the base of the ommatidium (red), with little contribution to the

rhabdom. Insets: the fused rhabdom of Papilio at three different levels, illustrating the tiered design. (ii) Transmission electron microscopy of a section through an

ommatidium from the butterfly Anthocharis (Pieridae). (E,F) Developmental specification of ommatidial cell types in Drosophila. (E) Eight-cell cluster from wandering third-

instar larvae. After initial recruitment from an undifferentiated pool of progenitors, PR cell fates are specified through combinatorial expression of transcription factors, such

as Spalt (purple) + Senseless (red) in the case of R8, or Spalt + Prospero (blue) for R7. (F) Expression of Spalt in ‘inner PRs’ is crucial for their specification into R7 and R8 via

Prospero and Senseless, respectively. (G) ‘Inner PRs’ R7 and R8 terminate in a deeper level of the brain, with long visual fibers (Lvf) projecting to the medulla (M) neuropil.

Outer PR R1–6 have short visual fibers (Svf) terminating in the lamina (L) neuropil, thereby connecting to distinct postsynaptic partners. (H) Based on the molecular (and in

some cases morphological) criteria of inner PRs, Drosophila ommatidia can be subdivided into five subtypes, which are discussed in the main text. Reproduced from [120]

(Bi); [39] (Bii), (Cii); [9] (Di); [121] (Dii).
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classical model organisms such as higher flies (Diptera, e.g.,
Drosophila), honeybees (Hymenoptera), and butterflies
(Lepidoptera) exemplifies this problem (Figure 1B–D):
while six ‘outer PRs’ called R1–6 span the entire thickness
of the retina in the open rhabdom of Drosophila, the two
‘inner PRs’ occupy the center, with R7 located distally and
R8 proximally (Figure 1B; reviewed in [7]). In honeybees,
eight PRs span the entire thickness of the retina in a fused
rhabdom, with one additional small PR located proximally
(R9) that contributes little to the rhabdom (Figure 1C [8]).
The proximodistal separation of PRs becomes more extreme
in some butterflies, where two groups of four PRs each
317
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contribute rhabdomeric microvilli in either the proximal or
the distal side of the rhabdom. This ‘tiered’ butterfly retina is
completed by a small proximal cell (R9), similar to honey-
bees (Figure 1D; reviewed in [9]). Although it seems reason-
able to assume R9 in both honeybees and butterflies shares
homology to Drosophila R8 cells (see below), no claims can
easily be made about each of the eight other PRs [10,11].

A powerful system for the standardized numbering of
insect PRs has recently been proposed [10], taking advan-
tage of the well-understood specification of PR subtypes in
a developing Drosophila ommatidium [10,11]. During lar-
val stages, Drosophila PRs are recruited in a stereotypical
order (R8 first, followed by R2/R5, R3/R4, then R1/R6, and
finally R7; Figure 1E), which is deeply conserved and
thereby allows identification of their homologous counter-
parts in other species [10–13]. Furthermore, developing
Drosophila PR subtypes also express a well-characterized
combination of transcription factors, defining their fate
within the ommatidium (Figure 1E [14]). Some of the ‘outer
PRs’ fall into pairs expressing identical combinations of
transcription factors [such as Bar and Seven up (Svp) in R1
+ R6, Rough in R2 + R5, and Rough + Svp in R3 and R4],
and Svp expression in PRs may be conserved between
species [13]. In Drosophila, both R7 and R8 are distin-
guished by the expression of the transcription factor Spalt,
which is both necessary and sufficient for expression of
inner PR markers [15,16]. The fates of R7 and R8 are then
separated by two additional transcription factors: Sense-
less (Sens), expressed in R8, and Prospero (Pros) in R7
(Figure 1F [16–19]). Hence, the expression of markers such
as Spalt, Sens, and Pros, which are expressed in PRs
throughout the adult stages, could provide a more accurate
way of identifying the homology of insect PRs [20,21]. Fi-
nally, Drosophila R7 and R8 can also be identified based on
the length of their axons, which project to a deeper level of
the optic lobe, called the medulla, whereas R1–R6 have
short visual fibers that stop in the lamina (Svf). (Figure 1G
[22]) PRs with ‘long visual fibers’ (Lvf) have been reported
in many different insects [23], yet in most cases tracing the
axon path is challenging and the identity of Lvf PRs within
the ommatidium could not be defined. Instead, recent
studies have focused on comparing Rhodopsin expression
of Svf and Lvf PRs between species [24]. As we discuss
below, Rhodopsin expression in R7 and R8 creates at least
four ommatidial subtypes in Drosophila, distributed either
stochastically or localized (Figure 1H [25,26]). Recent
characterization of Rhodopsins in other insects now allows
a more detailed comparison.

Striking similarities between the stochastic retinal
mosaics of different insects
The insect retinal mosaic is best understood in Drosophila,
where differential expression of four Rhodopsin genes
creates a mosaic of two stochastically distributed omma-
tidial subtypes (Figure 2A [5,25]). While outer PRs R1–6 in
both subtypes express the broad-band Rhodopsin Rh1 (a
Blue/Green Rhodopsin which associates with a UV-sensi-
tizing pigment), ‘pale’ ommatidia express UV-sensitive
Rhodopsin Rh3 in R7 and Blue Rh5 in R8, whereas ‘yellow’
ommatidia contain another UV Rhodopsin in R7 (Rh4) and
a Green Rhodopsin in R8 (Figure 2B,C [27–29]). The
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subtype choice originally occurs in R7 through stochastic
expression of the transcription factor Spineless exclusively
in ‘yellow’ R7 cells (yR7) [30]. Spineless directly activates
expression of Rh4 and represses the ‘pale’ fate in R7, also
preventing the induction of the ‘pale’ fate in the underlying
R8 cell, which is induced by an unknown signal from pR7
[29,31]. It was recently shown how the complex interplay
between activator and silencer sequences from two spine-
less alleles results in the stable choice in R7 cells
(Figure 2D [32]). Interestingly, ‘pale’ and ‘yellow’ omma-
tidia occur in an uneven ratio (35:65) that is conserved
among higher flies [33]. How this bias is achieved remains
unclear, as is its functional significance for the behavior of
the animal.

Characterization of the honeybee Rhodopsin genes
revealed striking similarities with the stochastic retinal
mosaic of Drosophila, despite considerable differences in
ommatidial organization [34]. Expression of UV-, Blue-,
and Green Rhodopsins form three stochastically distribut-
ed ommatidial subtypes (termed I, II, and III; Figure 2E).
Using the homology-based standardization of PRs, the
three Lvf PRs of honeybees can be classified as two distal
R7-like cells and one proximal R8 homolog [10]. As in
Drosophila, ‘outer PRs’ with Svf always express the same
long-wavelength Rhodopsin, while the R7-like cells choose
stochastically between expression of the UV or Blue Rho-
dopsin [34]. Given its small size, the R8-like cell (R9) is
difficult to characterize, yet it most likely expresses the
long-wavelength Rhodopsin [34]. Fascinatingly, the overall
occurrence of UV versus Blue R7-like cells is approximate-
ly 68:32 and, therefore, strikingly similar to the yR7:pR7
ratio in Drosophila (65:35). The uneven distribution of the
three honeybee subtypes then amounts to 44% Type I (UV/
B), 46% Type II (UV/UV), and 10% Type III (B/B)
(Figure 2F). Therefore, it appears that two seemingly
different retinal mosaics could be shaped by variations
of the same molecular program using factors that are
evolutionarily conserved between species.

Among insects, butterflies manifest some of the most
complex stochastic retinal mosaics (reviewed in [9,35,36])
(Figure 2G). In the swallowtail Papilio, functional record-
ings revealed as many as six individual classes of PRs [9],
but the genome appears to only contain five Rhodopsins:
UV-, Blue- and three long-wavelength forms [9,35]. As in
many other butterflies, their expression patterns in R7-like
Lvf PRs (called R1 and R2 in butterflies) are strikingly
similar to those in honeybees (Figure 2F): three stochasti-
cally distributed subtypes (I, II, and III) with stochastic
choice between UV and Blue Rhodopsins, while the proxi-
mal R8-like cell (R9) co-expresses two of the long-wave-
length Rhodopsins [9,35]. However, exactly 50% of R7-like
cells express either UV- or Blue Rhodopsins, resulting in a
subtype distribution of 50% Type I (UV/B), 25% Type II
(UV/UV), and 25% Type III (B/B). Thus, whatever mecha-
nism shapes the uneven ratio of three ommatidial subtypes
with varying Rhodopsin expression in honeybees, in anal-
ogy to Spineless function in flies, is not found in this
papillionid butterfly. It must be noted that duplication of
the gene encoding Blue Rhodopsin in Lycaenidae led to an
even more complex Lvf mosaic that would require an
additional level or regulation (reviewed in [36]). The second
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Figure 2. Common features and differences between ommatidial mosaics in different insects. (A) The Drosophila retina contains two ommatidial subtypes, named ‘yellow’

and ‘pale’, which are distributed stochastically in an uneven ratio (65:35). They differ in the Rhodopsins expressed in R7 [choice between UV opsins Rh3 and Rh4] and R8

(Blue opsin Rh5, or Green opsin Rh6), thereby creating a mosaic of chromatic sensitivities. The subtypes are first defined in R7 cells by stochastic expression of the

transcription factor Spineless in the ‘yellow’ R7 subtype, where it represses the ‘pale’ fate. Only ‘pale’ R7 cells instruct underlying R8 cells to acquire the same subtype fate,

while ‘yellow’ R8 cells choose their fate by default. A cellular signal transduction pathway maintains the chosen subtype fate in R8 cells by mutual repression. Abbreviation:

BB, broad-band Rhodopsin associated with a UV-sensitizing pigment. (B) Stochastic distribution of ‘pale’/‘yellow’ rhodopsins Rh3 (red) and Rh4 (blue) in the R7 layer of the

adult Drosophila retina. (C) Similar stochastic distribution of Rh5 (purple) and Rh6 (green) in the R8 layer. (D) Molecular mechanism driving stochastic expression of

spineless in R7 cells. Activating (green) and repressing (red) cis-regulatory elements determine on–off expression. Furthermore, interchromosomal long-range

communication (via ‘intercom’, blue) modulates the frequency of expression, and coordinates expression state between alleles. As a result, both alleles are expressed in the

same random subsets of R7 cells. Spineless encodes a PAS-bHLH transcription factor that then activates ‘yellow’-specific downstream genes. (E) The retinal mosaic of the

honeybee worker (Apis mellifera) contains three stochastically distributed subtypes, named I (44%), II (46%), and III (10%). Similarly to Drosophila, the mosaic is defined by

differences in Rhodopsin expression in two PRs with long visual fibers (Lvf), R1 (choice between UV or B/blue) and R5 (UV or B/blue). The identity of R9 remains obscure due

to its small size. Similar to Drosophila, all PRs with short visual fibers (Svf) express the same long-wavelength Rhodopsin (G/green). (Lvf PRs are shown in the center of the

ommatidial schematic, following the nomenclature of [10]). (F) Stochastic expression of honeybee rhodopsin genes in the adult retina visualized by in situ hybridization

against UV (left) and blue opsins (right). (G) The ventral retina of the swallowtail butterfly Papilio also contains three stochastically distributed ommatidial subtypes, named

I (�50%), II (�25%), and III (�25%). As in the honeybee, distal PRs with Lvfs (R1 and R2) choose between expression of UV and Blue Rhodopsins. The basal PR always co-

expresses two long-wavelength Rhodopsins (LW1 and LW2). Unlike in Drosophila and honeybees, the mosaic is not uneven and extends to PRs with Svf: two cells always

co-express the same two long-wavelength Rhodopsins as PR R9, while the remaining four cells manifest different combinations of long-wavelength Rhodopsins. The

(Figure legend continued on the bottom of the next page.)
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striking feature of Papilio lies in the extension of stochastic
mosaic Rhodopsin expression into the Svf ‘outer PRs’: only
two Svf cells are identical between all three subtypes
(expressing one long-wavelength Rhodopsin dorsally, or
co-expressing the same two long-wavelength Rhodopsins
as the basal Lvf cell R9, ventrally). The remaining four
cells either choose between two long-wavelength Rhodop-
sins (Type I/III), or co-express them (Type II). Fascinating-
ly, this choice by Svf PRs is therefore linked to the UV/B
subtype decision in the R7-like cells, while the third Lvf cell
R9 seems invariable. Perhaps the same signaling pathway
that coordinates expression of R7 and R8 Rhodopsins in
Drosophila pale and yellow ommatidia [31,32] is reused in
butterfly Svf cells. Interestingly, the Svf mosaic is absent in
the nymphalid Monarch butterfly (Danaus plexippus),
where all six Svf cells express the same long-wavelength
Rhodopsin, a situation that has been proposed to be ances-
tral [36,37]. The final unique feature of Papilio lies in the
mosaic expression of additional pigments, such as the
fluorescent 3-hydroxyretinol in Type II ommatidia (shift-
ing sensitivity of R7-like cells from UV to violet), and the
‘perirhabdomeral pigments’ expressed by Svf PRs (red
pigment in Type I/II and yellow pigment in Type III)
[9,35]. Hence, expression of their biosynthetic enzymes
must also be co-regulated with rhodopsin expression. To-
gether with a purple pigment expressed in R7-like cells of
all three ommatidial subtypes, the combined mosaic ex-
pression of Papilio pigments shapes the complex chromatic
sensitivity curves recorded for butterfly PRs (Figure 2H),
which in turn serve as the basis for their exceptional color
vision system [38].

The evolution of localized specializations with defined
functions
A well-understood example of locally specified retinal units
in many insect species are the ommatidia containing po-
larization-sensitive PRs in the ‘dorsal rim area’ (DRA)
(reviewed in [39]). In many insect PRs, polarization sensi-
tivity is abolished by continuously twisting the rhabdo-
meres, thereby reducing sensitivity to specific e-vector
orientations [39,40]. Behavioral and physiological data
support a role of the specialized DRA in detecting the
celestial polarization pattern for navigation [40]. In Dro-
sophila, DRA ommatidia form a narrow band of one to two
ommatidial rows along the dorsal head cuticle (Figure 3A
[41–43]). Their Rhodopsin expression in R7 and R8 is
unique, because both express the UV Rhodopsin Rh3
[42–45]. Their morphology is also specialized: untwisted
rhabdomeres of R7 and R8 with an enlarged diameter form
polarization detectors oriented at orthogonal angles (R7
versus R8 [46]) that allow the animal to detect the e-vector
orientation of linearly polarized light (Figure 3B; reviewed
in [39,40]). Localized specification of Drosophila DRA om-
matidia results from combining positional information
provided by ‘dorsal selector genes’ in the retina (the tran-
scription factors of the Iroquois complex, Iro-C) with a
spectral sensitivity of most of these cell types is further modulated by the presence of ad

green). (H) Schematic of Papilio type I–III ommatidia depicting the additional pigments: 

they differ in perirhabdomeral pigment content: red (type I and II) or yellow (type III), resu

II ommatidia contain 3-hydroxyretinol, visible by UV-induced fluorescence (inset, top ce

light [see spectral sensitivities at bottom of (H)]. Reproduced from [31] (B), (C); [32] (D)
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diffusible signal emanating from the head cuticle all
around the eye (Wingless, Wg; Figure 3C). As a result,
the homeodomain transcription factor Homothorax (Hth)
becomes expressed in DRA R7 and R8 cells (Figure 3D),
where it is both necessary and sufficient to induce DRA fate
by modulating the retinal transcriptional network in inner
PRs together with Spalt [43,44,47,48].

The recent characterization of Rhodopsin genes from two
prominent polarization vision model species, crickets and
desert locusts, has led to important new insight into the
evolutionary mechanisms shaping insect retinal mosaics
[49,50]. As in flies, the DRA ommatidia of crickets (Gryllus
bimaculatus) show specialized Rhodopsin expression
(Figure 3E): five PRs (one Lvf cell and four Svf) all express
a blue-sensitive Rhodopsin, while the small proximal PR
(R8) expresses a UV Rhodopsin (the two remaining Svf cells
do not contribute to the rhabdom and their Rhodopsin
expression remains unclear) [49,51]. Interestingly, the five
blue-sensitive receptors form two groups of untwisted rhab-
domeres, with microvilli of R7 (Lvf) orthogonal to those of
R1,2,5, and 6 (Svf) (Figure 3F [51]). This Rhodopsin pattern
fits well with behavioral and electrophysiological data de-
scribing Blue receptors with high polarization sensitivity in
the DRA [52–55], yet the function of the UV-expressing
proximal cell in DRA ommatidia remains elusive because
it does not seem to be a functional part of the DRA polariza-
tion detection system. Unlike in flies, a cricket Homothorax-
like factor regulating DRA fate including Rhodopsin expres-
sion must be expressed in both Lvf and Svf PRs close to the
dorsal head cuticle, probably by uncoupling its regulation
from an Lvf-specific factor such as Spalt.

In contrast to the predominantly blue-sensitive DRA,
the central part of the cricket retina exhibits strong ex-
pression of the long-wavelength (Green) Rhodopsin, while
Blue Rhodopsin is completely absent [49]. Based on previ-
ous electrophysiological studies, the R7-like Lvf PR is most
likely UV-sensitive, while the Svf/Lvf nature, as well as the
Rhodopsin expressed in the small proximal cell, remain
obscure [51,53]. So far, there is no evidence of a stochastic
ommatidial mosaic in the central part of the cricket retina,
defined by Rhodopsin choice in the Lvf cell. The remaining
six Svf PRs are most likely green sensitive [49,51,53] (their
PR identities could not always be assigned, as originally
defined in [56]) (Figure 3G). The presence of a ‘ventral
band’ of ommatidia with altered Rhodopsin expression in
cricket (Blue and Green Rhodopsins) was unexpected
[49]. Its molecular specification and behavioral importance
remain unknown, yet similar retinal specifications exist in
other insect species and are discussed below.

An even more extreme molecular specialization of DRA
ommatidia was recently described in the desert locust
(Schistocerca gregaria) [50], another classical polarization
vision model [57,58]. In the DRA, the blue-sensitive Rho-
dopsin is expressed by all PRs (Figure 3H), a situation
reminiscent of Monarch butterflies, where a UV Rhodopsin
is expressed in most DRA PRs (R1–8), including Svf and
ditional pigments (V*, violet; R, red-sensitive; BB, broad band; DG, double-peaked

while all three subtypes contain purple pigment (PP) granules distally in R1 and R2,

lting in different coloring when back-illuminated (inset, top right). Finally, only type

nter). This pigment shifts the sensitivity of type II R1 and R2 UV PRs towards violet

; [34] (F); [9] (H).
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Figure 3. Localized specification of dorsal rim ommatidia of flies, crickets, and desert locusts. (A) Scanning electron microscopy (EM) with the approximate location of one

to two rows of specialized ommatidia in the dorsal rim area (DRA) in Drosophila. Inset: only DRA ommatidia express the UV Rhodopsin Rh3 in both R7 and R8. (B) In the

DRA, the diameter of R7 and R8 PR rhabdomeres is enlarged (compare with Figure 1B). Furthermore, rhabdomeric microvilli are untwisted and oriented at an angle of 908
(symbolized by the double-headed arrows). (C) During development, the DRA fate is induced by combining positional information provided by the dorsal selector genes of

the Iroquois complex (Iro-C, blue) and high levels of Wingless signaling (Wg, green), which induce an unknown diffusible signal emanating from the adjacent head tissue all

around the eye. (D) The homeodomain transcription factor Homothorax specifically marks R7 and R8 nuclei of DRA ommatidia (Hth shown in green, co-labeled with the

pan-neuronal marker Elav in blue), where it is both necessary and sufficient to induce the DRA fate. (E) Summary of Rhodopsin expression in cricket (Gryllus bimaculatus)

DRA ommatidia. As in Drosophila, cricket ommatidia contain eight PRs, at least one of which has long visual fibers (Lvf; identity of the proximal cell remains unclear). Five

PRs in the DRA [Lvf + four short visual fibers (Svf)] express Blue Rhodopsin. The proximal cell expresses UV Rhodopsin, while two cells do not contribute to the Rhabdom

(shown in white; Rhodopsin expression unknown). (F) In situ hybridizations visualizing the expression of cricket Rhodopsins in the adult retina. Note expression of blue

opsin outside the DRA, only in a previously undescribed ventral band of ommatidia. Inset, top: summary and scanning EM of DRA morphology where two groups of PR

forming orthogonally oriented, untwisted rhabdomeric microvilli: R7 versus R1,2,5, and 6 (white ‘T’ indicates orientation of the ommatidium). (G) Summary of Rhodopsin

expression in cricket central ommatidia: the Lvf cell most likely expresses a UV Rhodopsin, while Rhodopsin expression in the proximal cell remains unknown. The six

remaining Svf PRs most likely express the same Green Rhodopsin (exact PR identities could not be determined: question mark). (H–J) Summary of Rhodopsin expression in

ommatidial subtypes in the retina of the desert locust (Schistocerca gregaria). (H) DRA ommatidia are dramatically specialized, with all PRs expressing only the Blue (B)

Rhodopsin. (I) Specialized morphology of locust DRA ommatidia, where R7 forms untwisted rhabdomeric microvilli that are oriented at 908 to those of R1,2,5,6, and 8. (J)

Outside the DRA, five Svf PRs always co-express blue (B) and green-sensitive (G) Rhodopsins, while two basal Svf cells express only the Green Rhodopsin (R1+R4).

Additionally, a mosaic of two ommatidial subtypes exists: type I (65%) and type II (35%). Opsin expression in the only PR with long visual fibers (R7) defines the mosaic by

choosing between UV (Type I: UV) and blue (Type II: Blue). Reproduced from [44] (A), (B); [47] (C); [49,52] (F); [60] (I).
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Lvf PRs [37]. The exclusive expression of Blue Rhodopsin
in the locust DRA was surprising, given that UV receptors
of low polarization sensitivity had previously been de-
scribed in the locust DRA [59], where DRA ommatidia
form a fan-shaped array of detectors [60,61] (Figure 3I).
Interestingly, in the main part of the locust retina, seven
Svf PRs express a long-wavelength (Green) Rhodopsin, five
of which also co-express Blue Rhodopsin, leaving two
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proximal PRs (R1 and R4) that are exclusively green
sensitive [50,62]). The remaining single Lvf cell (R7)
expresses either a UV (Type I) or a Blue (Type II) Rhodop-
sin, thus defining two subtypes of ommatidium that are
distributed randomly with a ratio that is almost identical
to that reported in Drosophila (65% Type I, 35% Type II)
(Figure 3J). Despite these important similarities, it must
be pointed out that the recent demonstration of only one
Lvf cell per ommatidium in locusts was different from that
in flies, honeybees, and butterflies [23,62,63]. The func-
tional implications of one versus two Lvf cells per omma-
tidium are not clear, yet the advantage of comparing a
delayed signal propagating through a multi-synaptic
Svf!Lamina pathway versus a faster Lvf channel into
the medulla has been proposed for the locust DRA
[62]. Taken together, the extreme molecular specialization
of the DRA in both crickets and locusts is reminiscent of the
Monarch DRA, while non-DRA ommatidia form potentially
homogeneous territories in crickets, or two stochastically
distributed subtypes in locusts.

The generation of regional differences and their
behavioral relevance
Beyond the localized specification of ommatidia in the
periphery, defined territories of the insect retina can adopt
a specific functional organization, for instance when form-
ing acute zones with increased resolution [64]. Often, dor-
sal and ventral regions of the retina show important
differences in morphology, physiology, and Rhodopsin ex-
pression [49,65,66]. In Drosophila, specialized ommatidia
co-expressing both R7 Rhodopsins (Rh3+Rh4) are located
in the dorsal-most third of the adult retina (Figure 4A)
[67]. Molecularly, these ommatidia represent an unusual
form of the ‘yellow’ subtype, in which expression of Rh3 has
been de-repressed (DTy, ‘dorsal third yellow’ [31,67])
(Figure 4B). Similar Rhodopsin co-expression had been
known in butterflies [68,69], and increasing evidence
now suggests it is a common theme in insect retinas, rather
than the exception [50,65–70]. The Drosophila transcrip-
tion factors of Iro-C are expressed specifically in the dorsal
half of the developing fly eye (Figure 4C), where they direct
the development of dorsal structures and positioning of the
equator of the eye [71–73]. Iro-C factors attenuate Spine-
less levels in the dorsal third, resulting in low levels of the
repressor of Rh3, Defective proventriculus (Dve) [31]. As a
result, Rh3 becomes derepressed, whereas Rh4 levels are
unaffected by low Spineless levels (Figure 4D, [31]). Using
this simple mechanism, a new class of ommatidia is creat-
ed in the part of the eye facing the sky. However, the
functional significance of DTy ommatidia remains un-
known due to the lack of Drosophila ethological data.
Existing behavioral and physiological data from other
insects provide clues to the function of such dorsoventral
territories.

Dragonflies serve as an attractive model for studying
the chasing behavior of a flying predator that calculates an
interception course to its prey (reviewed in [74]). During
this complex behavioral task, the animal always fixates the
prey with the dorsal half of its eye (Figure 4E). The dorsal
eye of the dragonfly Sympetrum contains pronounced mor-
phological specializations (Figure 4F): a yellow screening
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pigment in combination with a high frequency of blue
receptors in dorsal Sympetrum ommatidia form a highly
sensitive system that includes a fovea region with small
inter-ommatidial angles perfectly adapted for the fast
tracking of prey against the bright-blue sky [75,76]. Al-
though no sexual differences have been reported for
dragonflies, this blue-sensitive dorsal specialization is
reminiscent of exclusive Blue- and UV Rhodopsin expres-
sion in the dorsal retina of the male butterfly Lycaena
rubidus [66]. It should be noted that, in addition to spe-
cialized dorsal ommatidia, the dragonfly also has DRA
ommatidia for the detection of polarized skylight [77]. In-
terestingly, other dragonfly behaviors depend on the ven-
tral retina, such as the detection of water surfaces for
establishing a territory (males) or oviposition (females)
[78]. Physiological characterization of the ventral dragon-
fly retina using electroretinograms (ERGs) revealed a high
frequency of Green receptors, further demonstrating the
functional separation (Figure 4G [76]). In fact, intracellu-
lar recordings and recent sequencing of up to 30 different
Rhodopsins from individual dragonfly species paint a com-
plex picture of the ventral retinal mosaic with many dif-
ferent PR classes of different chromatic sensitivity, most
likely due to co-expression of several Rhodopsins (UV,
Blue, and Green), as well as additional pigments [79–
81]. Hence, the retina is divided into two separate halves,
each serving distinct behavioral tasks.

Another interesting example of dorsoventral segregation
of retinal mosaic structure and function is the male honey-
bee drone, whose dorsal retina also mediates pursuit behav-
ior (chasing the queen), while the hive entrance is
approached through fixation with the ventral eye
(Figure 4H [82]). Interestingly, expression of Rhodopsin
transcripts changes drastically at the equator of the drone
retina, [83], thereby resembling certain transcripts from
dragonflies [81]. Most PRs in the dorsal half of the honeybee
drone retina seem to express the Blue Rhodopsin, whereas
the same cell types express the Green Rhodopsin in the
ventral half, a situation similar to the ommatidia of the
worker bee retina discussed above (Figure 4I). Some uncer-
tainty remains about the Rhodopsins expressed by the Lvf
cells in the specialized, blue-sensitive dorsal ommatidia of
the drone (termed here ‘DAdrone’), but strong expression of
the UV Rhodopsin suggests they are unusual Type II (or
Type I) ommatidia with blue-sensitive Svf PRs [83]. Al-
though most of the dorsal retina of the honeybee drone
contains this specialized DAdrone subtype, it remains un-
clear whether expression of UV and Blue receptors in the
ventral retina leads to stochastically distributed ommatidi-
al subtypes [83], as in the case of the worker bee (Figure 4J).
In conclusion, the drone eye differs greatly from the worker
bee both molecularly, as well as in size, shape, and omma-
tidia number [84]. Although drones do not participate in
pollenating flights that require precise navigation, their
eyes also contain DRA ommatidia [85,86]. Hence, in addition
to patterning the DRA, factors such as Iro-C may be used in
the honeybee drone to transform the entire dorsal retina
into DAdrone ommatidia serving another function. Interest-
ingly, behavior experiments with honeybee workers have
demonstrated differences in color discrimination tasks me-
diated by the dorsal versus the ventral halves of the retina
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Figure 4. Molecular and morphological specializations in the dorsal retina. (A) In the dorsal third of the adult Drosophila retina, specialized ‘yellow’ ommatidia co-express

both UV Rhodopsins, Rh3 and Rh4, creating a fourth ommatidial subtype (DTy). (B) Schematic summarizing the retinal mosaic in Drosophila, containing four ommatidial

subtypes defined by unique Rhodopsin expression: pale (blue), yellow (green), DTy (orange), and dorsal rim area (DRA; pink). (C) Eye pigmentation of an enhancer trap

element inserted in the Iroquois (Iro-C) complex of dorsal selector genes. (D) Summary of the transcription factor network regulating Rh3/Rh4 co-expression in R7 cells of

DTy ommatidia. By modulating Spineless levels, Iro-C attenuates repression of rh3 via the transcriptional repressor Defective proventriculus (Dve), while Rh4 levels remain

unaffected. (E) Examples from dragonflies, for different visual behaviors mediated by the dorsal half of the eye (top: prey capture) versus the ventral half of the eye (bottom:

detection of water surfaces as habitat or oviposition sites). (F) Section through a dragonfly (Sympetrum) eye demonstrating the obvious morphological differences between

dorsal and ventral retina. Note the sharp boundary between dorsal retina (expressing yellow pigment) and ventral retina. (G) Summary of morphological and molecular

features of the dorsal dragonfly retina. Top: ommatidia form fused rhadoms with eight PR cells, two of which have long visual fibers (Lvf; R6, R7). In the dorsal retina, the

short visual fiber (Svf) PRs most likely all contain Blue Rhodopsin. Bottom: Electroretinogram (ERG) of the dragonfly eye shows prevalence of blue receptors in the dorsal

half, whereas the ventral retina is mostly green sensitive. Electrophysiological studies point to a variety of cell types with different spectral sensitivities in the ventral eye,

most likely co-expressing different Rhodopsins (UV, B, G, and UV+B+G), as well as additional pigments. (H) Photograph of a male honeybee drone, summarizing evidence

of different behaviors that are mediated by the dorsal and ventral halves of the retina: chasing of the queen (dorsal) and approaching the hive (ventral). (I) Left: in situ

hybridization of adult retinas of male honeybee drone visualizing dramatic expression of Blue Rhodopsin in the dorsal retina, whereas Green Rhodopsin is found in the

ventral half. Note the sharp boundary in expression domains (black arrowhead). Right: schematic proposing an explanation for the specialized blue-sensitive dorsal

ommatidia of the drone (DAdrone) ommatidial subtype found in the dorsal drone eye (compare to Figure 2E). (J) Summary of differences in the retinal mosaic between

drones (left) and worker honeybees (right). Note the difference in overall retina size, facet diameter, and ommatidia number. While specialized DAdrone ommatidia occur

only in the dorsal retina of drones, it remains unclear whether three stochastically distributed subtypes exist ventrally (question mark). Alternatively, UV and Blue

Rhodopsins could be organized uniformly in Type I ommatidia. Reproduced from [67] (A); [122] (C); [74,78] (E); [39,76] (G); [83] (I).
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Figure 5. Retinal specializations in the ventral half of the insect retina. (A) Visual stimuli influencing the navigational decisions of flying insects, such as Drosophila: the sun,

sky polarization (double-headed arrow), chromatic gradients in the sky, landmarks (trees, bushes), optic flow, and polarized reflections from water surfaces. (B)

Morphological reconstruction of photoreceptor (PR) rhabdomere twist in the ventral retina using serial electron micrograph (EM) sections of R1–6 and R7 revealed a

reduced twist of R7 and rhabdomeres in three out of the six short visual fiber (Svf) PRs (R4–6, symbolized by the green, double-headed arrows. (C) Behavior in response to

ventral stimuli is strongly dependent on PRs with Svfs (R1–6), both using UV (R1-6+R7) and green stimuli (R1–6). R7 cells are involved in UV vision only. By contrast, dorsal

polarotaxis relies on DRA R7 and R8 alone. (D) Ventral eye pigmentation from an enhancer trap inserted into the sloppy paired (slp) locus. (E) PR morphology of the

mosquito Aedes aegypti, the vector of several pathogens dangerous to humans. (F) Whole-mounted adult mosquito retina stained for the long-wavelength Rhodopsin LW1/

Aaop9 (green) expressed in R7 cells. Note expression in the dorsal region, as well as in a ventral stripe of ommatidia. (G) Schematic summary of mosquito opsins co-

expressed in R7 cells of nonoverlapping regions: ‘dorsal region’ and the ventral stripe co-express the same Blue and Green Rhodopsin, while the central region in between

co-expresses three Rhodopsins (UV+B+G), resulting in broad band sensitivity. (H) Summary of the visual system of the backswimmer Notonecta glauca, a water bug

(Hemiptera). Top: photograph of the Notonecta eyes. Bottom: EM and drawing of a Notonecta ommatidium. Note that the rhabdomeres of R7 and R8 are fused, while R1–6

form an open rhabdom. (I) Zonation of the retina of Notonecta in the ventral eye region (only central rhabdomeres are shown). The rhabdomeres of R7 and R8 of dorsal-

most ommatidia in this region (shown in blue) are aligned in parallel, as in the rest of the eye (G). R7 and R8 rhabdomeres in the more ventral ommatidia (shown in red and

green) are aligned perpendicular to each other. Within a narrow stripe (in between broken lines), the central rhabdomere pairs are rotated so they align with the

dorsoventral axis (red ommatidia), rather than in the mediolateral direction, as the ventral-most ommatidia (shown in green). (J) Behavioral significance of the zonation

within the ventral Notonecta retina: when hanging below the water surface, ommatidia within the ventral band (shown in red) view the bright region of the water surface,

and are perfectly tuned for detecting vertical contours of objects floating on the water surface. (K) When the animal is flying, ventral ommatidia with perpendicularly

arranged rhabdomeres (red and green) serve as specialized detectors for water surfaces, which reflect horizontally polarized light. Reproduced from [123] (B); [96] (D); [100]

(E); [101] (F). Part (H) is reproduced with kind permission from the photographers � Heidi and Hans Koch.
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[87]. This situation might be more similar to Drosophila,
where DTy ommatidia could also influence the color vision
system of the animal. Existing behavioral color vision assays
should be used to address this problem [88–90]. Taken
together, molecular insights from Drosophila and other
species (behavior, morphology, and physiology) can be com-
bined to reveal how the insect retinal mosaics are adapted to
the needs of the animal.

Emerging design challenges: retinal bands and stripes
As discussed above, some insects have a specialized ventral
retina with discrete morphological and functional features
[49,75]. Drosophila have been shown to detect linearly
polarized light with the ventral eye [46,91], a behavior
that is independent of the DRA, which is only used for the
detection of celestial stimuli [46,92]. Such ventral polari-
zation vision can enable the detection of water surfaces,
which reflect horizontally polarized light (Figure 5A;
reviewed in [93]), resulting in attraction or avoidance
behaviors [94,95]. The ‘ventral polarization area’ (VPA)
mediating this behavior in Drosophila remains incom-
pletely characterized [46]. Unusual ommatidia with un-
twisted R7 rhabdomeres as well as three Svf cells (R4–6)
with reduced rhabdomeric twist exist in the ventral eye
(Figure 5B), providing a sufficient anatomical substrate for
detecting polarized UV light (using R7), or green light
ventrally (using R4–6) [46] (Figure 5C). It is not known
how the VPA is specified in Drosophila. However, genomic
enhancers from Drosophila specifically driving expression
in the ventral retina exist, for instance from the sloppy
paired (slp) locus, which encodes two transcription factors
[96] (Figure 5D). Therefore, it is possible that such factors
modulate the retinal mosaic in a way similar to Iro-C in the
dorsal eye [31,67].

Given that a good understanding of the ethology of
Drosophila is lacking [97], turning to mosquitoes promised
new insight into the interaction between visual behavior
and the semi-aquatic life style of these insects [98,99]. Un-
like PRs in its distant cousin Drosophila, PRs in Aedes
aegypti form a fused rhabdom, and express at least five
Rhodopsins (Figure 5E). Recent investigation of the retinal
mosaic from Aedes revealed several surprising findings
[100–102]: first, there is no apparent stochastic mosaic
of ommatidial subtypes, based on Rhodopsin expression
in R7 cells. Second, the four R7 Rhodopsins (UV, Blue, and
two long-wavelength) are always co-expressed, yet in dif-
ferent combinations, between different regions of the eye.
Third, the R7 cells in the dorsal-most Aedes ommatidia co-
express two non-UV Rhodopsins (Blue and Green), making
their chromatic sensitivity more similar to the DRA om-
matidia of crickets and locusts (Figure 5F; reviewed in
[39]). Finally, in an unusual stripe of ommatidia within the
ventral half of the eye reminiscent of the ‘ventral band’
from crickets, R7 co-expresses the same Blue and Green
Rhodopsins as in the dorsal-most ommatidia (Figure 5G).
Interestingly, such elongated horizontal zones have been
described predominantly in the eyes of arthropods living in
flat environments, such as water surfaces or deserts
(reviewed in [4]). Therefore, the ‘ventral stripe’ of mosqui-
toes and the ventral band of crickets could serve a similar
function as the VPA in Drosophila [46]. Just like a larger
ventral territory, it remains a fascinating question how
such a ventral stripe is patterned during development
because positional cues provided by Iro-C (and Slp-like
factors) seem insufficient to explain such a narrow special-
ization.

Probably the best-understood aquatic insect is the he-
mipteran ‘back swimmer’ (Notonecta glauca), which can be
found flying or diving into ponds, where they often hang
under the water surface (Figure 5H). The ommatidial
design of this species is interesting in that Svf PRs form
an open rhabdom, while the rhabdomeres of two Lvf inner
PRs are fused together [103,104]. The ventral Notonecta
retina exhibits a stunning organization into three separate
zones in which the microvilli orientations of R7 and R8 cells
change rather abruptly (Figure 5I [103]). A correlation of
this zonation with the body posture of the animal during
flight or while hanging under water revealed that the
visual angles of each zone are perfectly tuned for vision
under water, at the water surface, or in the air, respective-
ly: given the polarization of reflected light, the different
microvillar orientations within the respective zones ensure
maximal visual performance [103,105,106]. This example
represents a satisfying link between ventral retinal design
and the behavioral challenges an animal meets. It could
serve as a starting point to better understand the ventral
specializations of other insects discussed above. Although
little is known about the Notonecta retinal design outside
this specialized ventral region, a stochastic Rhodopsin
pattern reminiscent of Drosophila R7 cells has recently
been described for another hemipteran bug, the green rice
leafhopper Nephotettix cincticeps [107]. Taken together,
compared with stochastic or localized patterns, it remains
unknown how the ventral eye of insects is patterned to
form bands and stripes of discrete, alternating zones with
different morphology and Rhodopsin expression.

Concluding remarks
Here, we have discussed the similarities between insect
retinal mosaics and focused on potentially homologous
groups of PRs as previously proposed [10]. The ratio of
ommatidial subtypes is stable among higher Diptera
[33,108,109], yet subtle differences among drosophilids
have been reported [110,111]. The data from more distant-
ly related insects reviewed here show that some stochastic
mosaics look surprisingly similar (honeybee workers, but-
terflies, and locusts), raising the possibility that patterning
via factors similar to Spineless could be conserved. How-
ever, some species may lack any stochasticity and display
regional separation of ommatidial subtypes instead (crick-
ets, mosquitoes, and possibly honeybee drones). What
could be the advantage of having stochastic patterns over
regionalized ones? In the Drosophila ventral eye, detectors
for color vision (PRs with twisted rhabdomeres) and polar-
ization vision (PRs exhibiting reduced rhabdomeric twist)
are distributed stochastically within the same visual field
[26,46]. Stochastic distribution could guarantee a bias-free
distribution of different detectors, thereby avoiding the
loss of sensitivity for one certain stimulus over a larger
retinal field, as well as allowing efficient processing be-
tween ommatidia. In the rest of the retina, pale, yellow,
and DTy ommatidia might have similar effects on the color
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discrimination abilities of the animal. Interestingly, all
species discussed here manifest specialized ommatidia
in the dorsal periphery, suggesting that such features
are evolutionary conserved and did not evolve indepen-
dently (reviewed in [39]). To better understand the evolu-
tionary relation between dorsal or ventral retinal
structures, the expression of patterning genes (IroC, Wg,
and Slp) and transcription factors expressed in distinct
PRs must be compared between species. This is a time-
consuming task, but one that has already provided impor-
tant insight, for instance into how conserved factors govern
the dorsoventral patterning of the retina in different insect
species [112–114]. An exciting possibility lies in the newest
molecular tool for genome editing: CRISPR-Cas9 technol-
ogy will allow the experimental redesign of various insect
retinal mosaics to test the role of certain genes or pathways
in any given species [115]. Similar techniques are already
being used in insects such as moths and crickets [116–
119]. In the future, they will add important facets to the
comparative study of retinal mosaics by addressing novel
patterning strategies of general interest, such as the defi-
nition of retinal stripes.
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